
1   TECHNICAL 

WHITEPAPER 

SEI CERT-C RULES AND RECOMMENDATIONS MAPPED TO CODESONAR® 6.1 WARNING 

CLASSES 

 

 

 

 

 

 

 

 

SEI CERT-C RULES AND RECOMMENDATIONS 

MAPPED TO CODESONAR® 8.0 WARNING CLASSES 
 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 

 

TRUSTED LEADERS OF SOFTWARE ASSURANCE AND ADVANCED CYBER-SECURITY SOLUTIONS 

WWW.CODESECURE.COM 

http://www.codesecure.com/


SEI CERT-C RULES AND RECOMMENDATIONS MAPPED TO CODESONAR® 8.0 WARNING CLASSES 

2   TECHNICAL WHITEPAPER 

 

 

 
 

 

INTRODUCTION 

 
The SEI CERT C Coding Standard (CERT-C) provides rules and recommendations for secure coding in the C 

programming language. The goal of these rules and recommendations is to develop safe, reliable, and secure 

systems, for example by eliminating undefined behaviors that can lead to undefined program behaviors and 

exploitable vulnerabilities. Conformance to the coding rules defined in this standard is necessary (but not sufficient) 

to ensure the safety, reliability, and security  of software systems developed in the C programming language. 

CodeSonar 8.0 includes a large number of warning classes that support checking for the CERT-C  guidelines. 

Every CodeSonar warning report includes the numbers of any CERT-C rules and recommendations that are 

closely mapped to the warning’s class. (The close mapping for a warning  class is the set of categories—including 

CERT-C rules and recommendations—that most closely match the class, if any). 

You can configure CodeSonar to enable and disable warning classes mapped to specific CERT-C  rules and 

recommendations, or use build presets to enable all warning classes that are closely mapped to any CERT-C 

rules and recommendations. In addition, you can use the CodeSonar search function to find warnings related to 

specific CERT-C rules or recommendations, or to any CERT-C rule or recommendation. 

For more information on the SEI CERT C Coding Standard: 

https://www.securecoding.cert.org/confluence/display/c/  

The remainder of this document comprises two tables: 

• A table showing the close mapping between CodeSonar warning classes and the SEI CERT-C Coding 

Standard. 

• A table showing the broad mapping between CodeSonar warning classes and the the SEI CERT-C Coding 

Standard. The broad CERT-C mapping for a CodeSonar warning class includes the  close CERT-C mapping 

for the class, plus any other CERT-C rules and recommendations that        are related to the class in a meaningful 

way, but not eligible for the close mapping. 

 

 

 
CodeSecure is a leading global provider of application testing (AST) solutions used by the 

world’s  most security conscious organizations to detect, measure, analyze and resolve 

vulnerabilities  for software they develop or use. The company is also a trusted cybersecurity 

and artificial intelligence research partner for the nation’s civil, defense, and intelligence 

agencies. 

 
CodeSonar and CodeSentry are registered trademarks of CodeSecure, Inc. 

© CodeSecure, Inc. All rights reserved. 

https://www.securecoding.cert.org/confluence/display/c/


SEI CERT-C RULES AND RECOMMENDATIONS MAPPED TO CODESONAR® 8.0 WARNING CLASSES 

3   TECHNICAL WHITEPAPER 

 

 

 
 

 

SEI CERT C CODING STANDARD CLOSE MAPPING (CODESONAR V8.0) 

 
The following table contains CodeSonar warning classes that are closely mapped to CERT-C rules  and 

recommendations. 

 

Rule Rule Name Category Supported 

CERT-C:API00-C Functions should validate their parameters Recommendation Yes 

CERT-C:API01-C Avoid laying out strings in memory directly before sensitive data Recommendation No 

CERT-C:API02-C 
Functions that read or write to or from an array should take an argument to specify the source or 
target size 

Recommendation No 

CERT-C:API03-C Create consistent interfaces and capabilities across related functions Recommendation No 

CERT-C:API04-C Provide a consistent and usable error-checking mechanism Recommendation No 

CERT-C:API05-C Use conformant array parameters Recommendation No 

CERT-C:API07-C Enforce type safety Recommendation Yes 

CERT-C:API09-C Compatible values should have the same type Recommendation No 

CERT-C:API10-C APIs should have security options enabled by default Recommendation No 

CERT-C:ARR00-C Understand how arrays work Recommendation No 

CERT-C:ARR01-C Do not apply the sizeof operator to a pointer when taking the size of an array Recommendation Yes 

CERT-C:ARR02-C Explicitly specify array bounds, even if implicitly defined by an initializer Recommendation No 

CERT-C:ARR30-C Do not form or use out-of-bounds pointers or array subscripts Rule Yes 

CERT-C:ARR32-C Ensure size arguments for variable length arrays are in a valid range Rule Yes 

CERT-C:ARR36-C Do not subtract or compare two pointers that do not refer to the same array Rule Yes 

CERT-C:ARR37-C Do not add or subtract an integer to a pointer to a non-array object Rule Yes 

CERT-C:ARR38-C Guarantee that library functions do not form invalid pointers Rule Yes 

CERT-C:ARR39-C Do not add or subtract a scaled integer to a pointer Rule Yes 

CERT-C:CON01-C Acquire and release synchronization primitives in the same module, at the same level of abstraction Recommendation Yes 

CERT-C:CON02-C Do not use volatile as a synchronization primitive Recommendation No 

CERT-C:CON03-C Ensure visibility when accessing shared variables Recommendation No 

CERT-C:CON04-C Join or detach threads even if their exit status is unimportant Recommendation No 

CERT-C:CON05-C Do not perform operations that can block while holding a lock Recommendation Yes 

CERT-C:CON06-C Ensure that every mutex outlives the data it protects Recommendation No 

CERT-C:CON07-C Ensure that compound operations on shared variables are atomic Recommendation Yes 

CERT-C:CON08-C Do not assume that a group of calls to independently atomic methods is atomic Recommendation No 

CERT-C:CON09-C Avoid the ABA problem when using lock-free algorithms Recommendation No 

CERT-C:CON30-C Clean up thread-specific storage Rule Yes 

CERT-C:CON31-C Do not destroy a mutex while it is locked Rule Yes 

CERT-C:CON32-C Prevent data races when accessing bit-fields from multiple threads Rule Yes 

CERT-C:CON33-C Avoid race conditions when using library functions Rule Yes 

CERT-C:CON34-C Declare objects shared between threads with appropriate storage durations Rule Yes 

CERT-C:CON35-C Avoid deadlock by locking in a predefined order Rule Yes 

CERT-C:CON36-C Wrap functions that can spuriously wake up in a loop Rule Yes 

CERT-C:CON37-C Do not call signal() in a multithreaded program Rule Yes 

CERT-C:CON38-C Preserve thread safety and liveness when using condition variables Rule Yes 

CERT-C:CON39-C Do not join or detach a thread that was previously joined or detached Rule Yes 

CERT-C:CON40-C Do not refer to an atomic variable twice in an expression Rule Yes 

CERT-C:CON41-C Wrap functions that can fail spuriously in a loop Rule Yes 

CERT-C:CON43-C Do not allow data races in multithreaded code Rule Yes 

CERT-C:DCL00-C Const-qualify immutable objects Recommendation Yes 



SEI CERT-C RULES AND RECOMMENDATIONS MAPPED TO CODESONAR® 8.0 WARNING CLASSES 

4   TECHNICAL WHITEPAPER 

 

 

CERT-C:DCL01-C Do not reuse variable names in subscopes Recommendation Yes 

CERT-C:DCL02-C Use visually distinct identifiers Recommendation Yes 

CERT-C:DCL03-C Use a static assertion to test the value of a constant expression Recommendation No 

CERT-C:DCL04-C Do not declare more than one variable per declaration Recommendation Yes 

CERT-C:DCL05-C Use typedefs of non-pointer types only Recommendation Yes 

CERT-C:DCL06-C Use meaningful symbolic constants to represent literal values Recommendation No 

CERT-C:DCL07-C Include the appropriate type information in function declarators Recommendation Yes 

CERT-C:DCL08-C Properly encode relationships in constant definitions Recommendation No 

CERT-C:DCL09-C Declare functions that return errno with a return type of errno_t Recommendation No 

CERT-C:DCL10-C Maintain the contract between the writer and caller of variadic functions Recommendation No 

CERT-C:DCL11-C Understand the type issues associated with variadic functions Recommendation Yes 

CERT-C:DCL12-C Implement abstract data types using opaque types Recommendation No 

CERT-C:DCL13-C Declare function parameters that are pointers to values not changed by the function as const Recommendation Yes 

CERT-C:DCL15-C Declare file-scope objects or functions that do not need external linkage as static Recommendation Yes 

CERT-C:DCL16-C Use "L," not "l," to indicate a long value Recommendation Yes 

CERT-C:DCL17-C Beware of miscompiled volatile-qualified variables Recommendation No 

CERT-C:DCL18-C Do not begin integer constants with 0 when specifying a decimal value Recommendation Yes 

CERT-C:DCL19-C Minimize the scope of variables and functions Recommendation Yes 

CERT-C:DCL20-C Explicitly specify void when a function accepts no arguments Recommendation Yes 

CERT-C:DCL21-C Understand the storage of compound literals Recommendation No 

CERT-C:DCL22-C Use volatile for data that cannot be cached Recommendation No 

CERT-C:DCL23-C Guarantee that mutually visible identifiers are unique Recommendation Yes 

CERT-C:DCL30-C Declare objects with appropriate storage durations Rule Yes 

CERT-C:DCL31-C Declare identifiers before using them Rule No 

CERT-C:DCL36-C Do not declare an identifier with conflicting linkage classifications Rule Yes 

CERT-C:DCL37-C Do not declare or define a reserved identifier Rule Yes 

CERT-C:DCL38-C Use the correct syntax when declaring a flexible array member Rule No 

CERT-C:DCL39-C Avoid information leakage when passing a structure across a trust boundary Rule Yes 

CERT-C:DCL40-C Do not create incompatible declarations of the same function or object Rule Yes 

CERT-C:DCL41-C Do not declare variables inside a switch statement before the first case label Rule Yes 

CERT-C:ENV01-C Do not make assumptions about the size of an environment variable Recommendation Yes 

CERT-C:ENV02-C Beware of multiple environment variables with the same effective name Recommendation No 

CERT-C:ENV03-C Sanitize the environment when invoking external programs Recommendation No 

CERT-C:ENV30-C Do not modify the object referenced by the return value of certain functions Rule Yes 

CERT-C:ENV31-C Do not rely on an environment pointer following an operation that may invalidate it Rule No 

CERT-C:ENV32-C All exit handlers must return normally Rule Yes 

CERT-C:ENV33-C Do not call system() Rule Yes 

CERT-C:ENV34-C Do not store pointers returned by certain functions Rule No 

CERT-C:ERR00-C Adopt and implement a consistent and comprehensive error-handling policy Recommendation No 

CERT-C:ERR01-C Use ferror() rather than errno to check for FILE stream errors Recommendation No 

CERT-C:ERR02-C Avoid in-band error indicators Recommendation No 

CERT-C:ERR03-C Use runtime-constraint handlers when calling the bounds-checking interfaces Recommendation No 

CERT-C:ERR04-C Choose an appropriate termination strategy Recommendation No 

CERT-C:ERR05-C Application-independent code should provide error detection without dictating error handling Recommendation No 

CERT-C:ERR06-C Understand the termination behavior of assert() and abort() Recommendation No 

CERT-C:ERR07-C Prefer functions that support error checking over equivalent functions that don't Recommendation No 

CERT-C:ERR30-C Take care when reading errno Rule Yes 

CERT-C:ERR32-C Do not rely on indeterminate values of errno Rule No 

CERT-C:ERR33-C Detect and handle standard library errors Rule Yes 



SEI CERT-C RULES AND RECOMMENDATIONS MAPPED TO CODESONAR® 8.0 WARNING CLASSES 

5   TECHNICAL WHITEPAPER 

 

 

CERT-C:ERR34-C Detect errors when converting a string to a number Rule Yes 

CERT-C:EXP00-C Use parentheses for precedence of operation Recommendation Yes 

CERT-C:EXP02-C Be aware of the short-circuit behavior of the logical AND and OR operators Recommendation No 

CERT-C:EXP03-C Do not assume the size of a structure is the sum of the sizes of its members Recommendation No 

CERT-C:EXP05-C Do not cast away a const qualification Recommendation Yes 

CERT-C:EXP07-C Do not diminish the benefits of constants by assuming their values in expressions Recommendation No 

CERT-C:EXP08-C Ensure pointer arithmetic is used correctly Recommendation Yes 

CERT-C:EXP09-C Use sizeof to determine the size of a type or variable Recommendation No 

CERT-C:EXP10-C 
Do not depend on the order of evaluation of subexpressions or the order in which side effects take 

place 
Recommendation Yes 

CERT-C:EXP11-C Do not make assumptions regarding the layout of structures with bit-fields Recommendation No 

CERT-C:EXP12-C Do not ignore values returned by functions Recommendation Yes 

CERT-C:EXP13-C Treat relational and equality operators as if they were nonassociative Recommendation No 

CERT-C:EXP14-C Beware of integer promotion when performing bitwise operations on integer types smaller than int Recommendation Yes 

CERT-C:EXP15-C Do not place a semicolon on the same line as an if, for, or while statement Recommendation Yes 

CERT-C:EXP16-C Do not compare function pointers to constant values Recommendation No 

CERT-C:EXP19-C Use braces for the body of an if, for, or while statement Recommendation No 

CERT-C:EXP20-C Perform explicit tests to determine success, true and false, and equality Recommendation No 

CERT-C:EXP30-C Do not depend on the order of evaluation for side effects Rule Yes 

CERT-C:EXP32-C Do not access a volatile object through a nonvolatile reference Rule No 

CERT-C:EXP33-C Do not read uninitialized memory Rule Yes 

CERT-C:EXP34-C Do not dereference null pointers Rule Yes 

CERT-C:EXP35-C Do not modify objects with temporary lifetime Rule No 

CERT-C:EXP36-C Do not cast pointers into more strictly aligned pointer types Rule Yes 

CERT-C:EXP37-C Call functions with the correct number and type of arguments Rule Yes 

CERT-C:EXP39-C Do not access a variable through a pointer of an incompatible type Rule No 

CERT-C:EXP40-C Do not modify constant objects Rule No 

CERT-C:EXP42-C Do not compare padding data Rule Yes 

CERT-C:EXP43-C Avoid undefined behavior when using restrict-qualified pointers Rule Yes 

CERT-C:EXP44-C Do not rely on side effects in operands to sizeof, _Alignof, or _Generic Rule Yes 

CERT-C:EXP45-C Do not perform assignments in selection statements Rule Yes 

CERT-C:EXP46-C Do not use a bitwise operator with a Boolean-like operand Rule Yes 

CERT-C:EXP47-C Do not call va_arg with an argument of the incorrect type Rule Yes 

CERT-C:FIO01-C Be careful using functions that use file names for identification Recommendation Yes 

CERT-C:FIO02-C Canonicalize path names originating from tainted sources Recommendation Yes 

CERT-C:FIO03-C Do not make assumptions about fopen() and file creation Recommendation No 

CERT-C:FIO05-C Identify files using multiple file attributes Recommendation No 

CERT-C:FIO06-C Create files with appropriate access permissions Recommendation Yes 

CERT-C:FIO08-C Take care when calling remove() on an open file Recommendation No 

CERT-C:FIO09-C Be careful with binary data when transferring data across systems Recommendation No 

CERT-C:FIO10-C Take care when using the rename() function Recommendation No 

CERT-C:FIO11-C Take care when specifying the mode parameter of fopen() Recommendation No 

CERT-C:FIO13-C Never push back anything other than one read character Recommendation No 

CERT-C:FIO14-C Understand the difference between text mode and binary mode with file streams Recommendation No 

CERT-C:FIO15-C Ensure that file operations are performed in a secure directory Recommendation No 

CERT-C:FIO17-C Do not rely on an ending null character when using fread() Recommendation No 

CERT-C:FIO18-C Never expect fwrite() to terminate the writing process at a null character Recommendation No 

CERT-C:FIO19-C Do not use fseek() and ftell() to compute the size of a regular file Recommendation No 

CERT-C:FIO20-C Avoid unintentional truncation when using fgets() or fgetws() Recommendation No 



SEI CERT-C RULES AND RECOMMENDATIONS MAPPED TO CODESONAR® 8.0 WARNING CLASSES 

6   TECHNICAL WHITEPAPER 

 

 

CERT-C:FIO21-C Do not create temporary files in shared directories Recommendation Yes 

CERT-C:FIO22-C Close files before spawning processes Recommendation No 

CERT-C:FIO23-C Do not exit with unflushed data in stdout or stderr Recommendation No 

CERT-C:FIO24-C Do not open a file that is already open Recommendation Yes 

CERT-C:FIO30-C Exclude user input from format strings Rule Yes 

CERT-C:FIO32-C Do not perform operations on devices that are only appropriate for files Rule No 

CERT-C:FIO34-C Distinguish between characters read from a file and EOF or WEOF Rule Yes 

CERT-C:FIO37-C Do not assume that fgets() or fgetws() returns a nonempty string when successful Rule Yes 

CERT-C:FIO38-C Do not copy a FILE object Rule No 

CERT-C:FIO39-C Do not alternately input and output from a stream without an intervening flush or positioning call Rule Yes 

CERT-C:FIO40-C Reset strings on fgets() or fgetws() failure Rule Yes 

CERT-C:FIO41-C Do not call getc(), putc(), getwc(), or putwc() with a stream argument that has side effects Rule No 

CERT-C:FIO42-C Close files when they are no longer needed Rule Yes 

CERT-C:FIO44-C Only use values for fsetpos() that are returned from fgetpos() Rule No 

CERT-C:FIO45-C Avoid TOCTOU race conditions while accessing files Rule Yes 

CERT-C:FIO46-C Do not access a closed file Rule Yes 

CERT-C:FIO47-C Use valid format strings Rule Yes 

CERT-C:FLP00-C Understand the limitations of floating-point numbers Recommendation No 

CERT-C:FLP01-C Take care in rearranging floating-point expressions Recommendation No 

CERT-C:FLP02-C Avoid using floating-point numbers when precise computation is needed Recommendation No 

CERT-C:FLP03-C Detect and handle floating-point errors Recommendation No 

CERT-C:FLP04-C Check floating-point inputs for exceptional values Recommendation No 

CERT-C:FLP05-C Do not use denormalized numbers Recommendation No 

CERT-C:FLP06-C Convert integers to floating point for floating-point operations Recommendation Yes 

CERT-C:FLP07-C Cast the return value of a function that returns a floating-point type Recommendation No 

CERT-C:FLP30-C Do not use floating-point variables as loop counters Rule Yes 

CERT-C:FLP32-C Prevent or detect domain and range errors in math functions Rule Yes 

CERT-C:FLP34-C Ensure that floating-point conversions are within range of the new type Rule Yes 

CERT-C:FLP36-C Preserve precision when converting integral values to floating-point type Rule Yes 

CERT-C:FLP37-C Do not use object representations to compare floating-point values Rule No 

CERT-C:INT00-C Understand the data model used by your implementation(s) Recommendation No 

CERT-C:INT01-C Use rsize_t or size_t for all integer values representing the size of an object Recommendation No 

CERT-C:INT02-C Understand integer conversion rules Recommendation Yes 

CERT-C:INT04-C Enforce limits on integer values originating from tainted sources Recommendation Yes 

CERT-C:INT05-C Do not use input functions to convert character data if they cannot handle all possible inputs Recommendation Yes 

CERT-C:INT07-C Use only explicitly signed or unsigned char type for numeric values Recommendation Yes 

CERT-C:INT08-C Verify that all integer values are in range Recommendation Yes 

CERT-C:INT09-C Ensure enumeration constants map to unique values Recommendation Yes 

CERT-C:INT10-C Do not assume a positive remainder when using the % operator Recommendation No 

CERT-C:INT12-C Do not make assumptions about the type of a plain int bit-field when used in an expression Recommendation Yes 

CERT-C:INT13-C Use bitwise operators only on unsigned operands Recommendation Yes 

CERT-C:INT14-C Avoid performing bitwise and arithmetic operations on the same data Recommendation No 

CERT-C:INT15-C Use intmax_t or uintmax_t for formatted IO on programmer-defined integer types Recommendation No 

CERT-C:INT16-C Do not make assumptions about representation of signed integers Recommendation No 

CERT-C:INT17-C Define integer constants in an implementation-independent manner Recommendation No 

CERT-C:INT18-C Evaluate integer expressions in a larger size before comparing or assigning to that size Recommendation Yes 

CERT-C:INT30-C Ensure that unsigned integer operations do not wrap Rule Yes 

CERT-C:INT31-C Ensure that integer conversions do not result in lost or misinterpreted data Rule Yes 

CERT-C:INT32-C Ensure that operations on signed integers do not result in overflow Rule Yes 



SEI CERT-C RULES AND RECOMMENDATIONS MAPPED TO CODESONAR® 8.0 WARNING CLASSES 

7   TECHNICAL WHITEPAPER 

 

 

CERT-C:INT33-C Ensure that division and remainder operations do not result in divide-by-zero errors Rule Yes 

CERT-C:INT34-C 
Do not shift an expression by a negative number of bits or by greater than or equal to the number of 
bits that exist in the operand 

Rule Yes 

CERT-C:INT35-C Use correct integer precisions Rule Yes 

CERT-C:INT36-C Converting a pointer to integer or integer to pointer Rule Yes 

CERT-C:MEM00-C Allocate and free memory in the same module, at the same level of abstraction Recommendation Yes 

CERT-C:MEM01-C Store a new value in pointers immediately after free() Recommendation Yes 

CERT-C:MEM02-C Immediately cast the result of a memory allocation function call into a pointer to the allocated type Recommendation No 

CERT-C:MEM03-C Clear sensitive information stored in reusable resources Recommendation No 

CERT-C:MEM04-C Beware of zero-length allocations Recommendation No 

CERT-C:MEM05-C Avoid large stack allocations Recommendation Yes 

CERT-C:MEM06-C Ensure that sensitive data is not written out to disk Recommendation No 

CERT-C:MEM07-C Ensure that the arguments to calloc(), when multiplied, do not wrap Recommendation Yes 

CERT-C:MEM10-C Define and use a pointer validation function Recommendation No 

CERT-C:MEM11-C Do not assume infinite heap space Recommendation Yes 

CERT-C:MEM12-C Consider using a goto chain when leaving a function on error when using and releasing resources Recommendation No 

CERT-C:MEM30-C Do not access freed memory Rule Yes 

CERT-C:MEM31-C Free dynamically allocated memory when no longer needed Rule Yes 

CERT-C:MEM33-C Allocate and copy structures containing a flexible array member dynamically Rule Yes 

CERT-C:MEM34-C Only free memory allocated dynamically Rule Yes 

CERT-C:MEM35-C Allocate sufficient memory for an object Rule Yes 

CERT-C:MEM36-C Do not modify the alignment of objects by calling realloc() Rule Yes 

CERT-C:MSC00-C Compile cleanly at high warning levels Recommendation Yes 

CERT-C:MSC01-C Strive for logical completeness Recommendation No 

CERT-C:MSC04-C Use comments consistently and in a readable fashion Recommendation No 

CERT-C:MSC05-C Do not manipulate time_t typed values directly Recommendation No 

CERT-C:MSC06-C Beware of compiler optimizations Recommendation Yes 

CERT-C:MSC07-C Detect and remove dead code Recommendation Yes 

CERT-C:MSC09-C Character encoding: Use subset of ASCII for safety Recommendation No 

CERT-C:MSC10-C Character encoding: UTF8-related issues Recommendation No 

CERT-C:MSC11-C Incorporate diagnostic tests using assertions Recommendation Yes 

CERT-C:MSC12-C Detect and remove code that has no effect or is never executed Recommendation Yes 

CERT-C:MSC13-C Detect and remove unused values Recommendation Yes 

CERT-C:MSC14-C Do not introduce unnecessary platform dependencies Recommendation No 

CERT-C:MSC15-C Do not depend on undefined behavior Recommendation No 

CERT-C:MSC17-C Finish every set of statements associated with a case label with a break statement Recommendation Yes 

CERT-C:MSC18-C Be careful while handling sensitive data, such as passwords, in program code Recommendation Yes 

CERT-C:MSC19-C For functions that return an array, prefer returning an empty array over a null value Recommendation No 

CERT-C:MSC20-C Do not use a switch statement to transfer control into a complex block Recommendation Yes 

CERT-C:MSC21-C Use robust loop termination conditions Recommendation Yes 

CERT-C:MSC22-C Use the setjmp(), longjmp() facility securely Recommendation Yes 

CERT-C:MSC23-C Beware of vendor-specific library and language differences Recommendation Yes 

CERT-C:MSC24-C Do not use deprecated or obsolescent functions Recommendation Yes 

CERT-C:MSC25-C Do not use insecure or weak cryptographic algorithms Recommendation Yes 

CERT-C:MSC30-C Do not use the rand() function for generating pseudorandom numbers Rule Yes 

CERT-C:MSC32-C Properly seed pseudorandom number generators Rule Yes 

CERT-C:MSC33-C Do not pass invalid data to the asctime() function Rule Yes 

CERT-C:MSC37-C Ensure that control never reaches the end of a non-void function Rule Yes 

CERT-C:MSC38-C Do not treat a predefined identifier as an object if it might only be implemented as a macro Rule Yes 



SEI CERT-C RULES AND RECOMMENDATIONS MAPPED TO CODESONAR® 8.0 WARNING CLASSES 

8   TECHNICAL WHITEPAPER 

 

 

CERT-C:MSC39-C Do not call va_arg() on a va_list that has an indeterminate value Rule Yes 

CERT-C:MSC40-C Do not violate constraints Rule No 

CERT-C:MSC41-C Never hard code sensitive information Rule Yes 

CERT-C:POS01-C Check for the existence of links when dealing with files Recommendation No 

CERT-C:POS02-C Follow the principle of least privilege Recommendation No 

CERT-C:POS04-C Avoid using PTHREAD_MUTEX_NORMAL type mutex locks Recommendation No 

CERT-C:POS05-C Limit access to files by creating a jail Recommendation Yes 

CERT-C:POS30-C Use the readlink() function properly Rule Yes 

CERT-C:POS34-C Do not call putenv() with a pointer to an automatic variable as the argument Rule Yes 

CERT-C:POS35-C Avoid race conditions while checking for the existence of a symbolic link Rule No 

CERT-C:POS36-C Observe correct revocation order while relinquishing privileges Rule No 

CERT-C:POS37-C Ensure that privilege relinquishment is successful Rule No 

CERT-C:POS38-C Beware of race conditions when using fork and file descriptors Rule Yes 

CERT-C:POS39-C Use the correct byte ordering when transferring data between systems Rule No 

CERT-C:POS44-C Do not use signals to terminate threads Rule Yes 

CERT-C:POS47-C Do not use threads that can be canceled asynchronously Rule No 

CERT-C:POS48-C Do not unlock or destroy another POSIX thread's mutex Rule Yes 

CERT-C:POS49-C 
When data must be accessed by multiple threads, provide a mutex and guarantee no adjacent data is 

also accessed 
Rule Yes 

CERT-C:POS50-C Declare objects shared between POSIX threads with appropriate storage durations Rule No 

CERT-C:POS51-C Avoid deadlock with POSIX threads by locking in predefined order Rule Yes 

CERT-C:POS52-C Do not perform operations that can block while holding a POSIX lock Rule Yes 

CERT-C:POS53-C Do not use more than one mutex for concurrent waiting operations on a condition variable Rule No 

CERT-C:POS54-C Detect and handle POSIX library errors Rule Yes 

CERT-C:PRE00-C Prefer inline or static functions to function-like macros Recommendation Yes 

CERT-C:PRE01-C Use parentheses within macros around parameter names Recommendation No 

CERT-C:PRE02-C Macro replacement lists should be parenthesized Recommendation Yes 

CERT-C:PRE03-C Prefer typedefs to defines for encoding non-pointer types Recommendation No 

CERT-C:PRE04-C Do not reuse a standard header file name Recommendation No 

CERT-C:PRE05-C Understand macro replacement when concatenating tokens or performing stringification Recommendation Yes 

CERT-C:PRE06-C Enclose header files in an include guard Recommendation No 

CERT-C:PRE07-C Avoid using repeated question marks Recommendation No 

CERT-C:PRE08-C Guarantee that header file names are unique Recommendation No 

CERT-C:PRE09-C Do not replace secure functions with deprecated or obsolescent functions Recommendation No 

CERT-C:PRE10-C Wrap multistatement macros in a do-while loop Recommendation No 

CERT-C:PRE11-C Do not conclude macro definitions with a semicolon Recommendation Yes 

CERT-C:PRE12-C Do not define unsafe macros Recommendation No 

CERT-C:PRE13-C Use the Standard predefined macros to test for versions and features. Recommendation No 

CERT-C:PRE30-C Do not create a universal character name through concatenation Rule Yes 

CERT-C:PRE31-C Avoid side effects in arguments to unsafe macros Rule Yes 

CERT-C:PRE32-C Do not use preprocessor directives in invocations of function-like macros Rule Yes 

CERT-C:SIG00-C Mask signals handled by noninterruptible signal handlers Recommendation Yes 

CERT-C:SIG01-C Understand implementation-specific details regarding signal handler persistence Recommendation Yes 

CERT-C:SIG02-C Avoid using signals to implement normal functionality Recommendation Yes 

CERT-C:SIG30-C Call only asynchronous-safe functions within signal handlers Rule Yes 

CERT-C:SIG31-C Do not access shared objects in signal handlers Rule Yes 

CERT-C:SIG34-C Do not call signal() from within interruptible signal handlers Rule Yes 

CERT-C:SIG35-C Do not return from a computational exception signal handler Rule Yes 

CERT-C:STR00-C Represent characters using an appropriate type Recommendation Yes 



SEI CERT-C RULES AND RECOMMENDATIONS MAPPED TO CODESONAR® 8.0 WARNING CLASSES 

9   TECHNICAL WHITEPAPER 

 

 

CERT-C:STR01-C Adopt and implement a consistent plan for managing strings Recommendation No 

CERT-C:STR02-C Sanitize data passed to complex subsystems Recommendation Yes 

CERT-C:STR03-C Do not inadvertently truncate a string Recommendation Yes 

CERT-C:STR04-C Use plain char for characters in the basic character set Recommendation Yes 

CERT-C:STR05-C Use pointers to const when referring to string literals Recommendation Yes 

CERT-C:STR06-C Do not assume that strtok() leaves the parse string unchanged Recommendation No 

CERT-C:STR07-C Use the bounds-checking interfaces for string manipulation Recommendation Yes 

CERT-C:STR08-C Use managed strings for development of new string manipulation code Recommendation No 

CERT-C:STR09-C Don't assume numeric values for expressions with type plain character Recommendation No 

CERT-C:STR10-C Do not concatenate different type of string literals Recommendation No 

CERT-C:STR11-C Do not specify the bound of a character array initialized with a string literal Recommendation No 

CERT-C:STR30-C Do not attempt to modify string literals Rule No 

CERT-C:STR31-C Guarantee that storage for strings has sufficient space for character data and the null terminator Rule Yes 

CERT-C:STR32-C Do not pass a non-null-terminated character sequence to a library function that expects a string Rule Yes 

CERT-C:STR34-C Cast characters to unsigned char before converting to larger integer sizes Rule Yes 

CERT-C:STR37-C Arguments to character-handling functions must be representable as an unsigned char Rule Yes 

CERT-C:STR38-C Do not confuse narrow and wide character strings and functions Rule Yes 

CERT-C:WIN00-C Be specific when dynamically loading libraries Recommendation Yes 

CERT-C:WIN01-C Do not forcibly terminate execution Recommendation No 

CERT-C:WIN02-C Restrict privileges when spawning child processes Recommendation Yes 

CERT-C:WIN03-C Understand HANDLE inheritance Recommendation No 

CERT-C:WIN04-C Consider encrypting function pointers Recommendation No 

CERT-C:WIN30-C Properly pair allocation and deallocation functions Rule Yes 



SEI CERT-C RULES AND RECOMMENDATIONS MAPPED TO CODESONAR® 8.0 WARNING CLASSES 

10   TECHNICAL WHITEPAPER 

 

 

 
 
 

 
SEI CERT C CODING STANDARD BROAD MAPPING (CODESONAR V8.0) 

 

The following table contains CodeSonar warning classes that are broadly mapped to CERT-C rules  and 

recommendations. 

 

Rule Rule Name Category Supported 

CERT-C:API00-C Functions should validate their parameters Recommendation Yes 

CERT-C:API01-C Avoid laying out strings in memory directly before sensitive data Recommendation No 

CERT-C:API02-C 
Functions that read or write to or from an array should take an argument to specify the source or target 
size 

Recommendation No 

CERT-C:API03-C Create consistent interfaces and capabilities across related functions Recommendation No 

CERT-C:API04-C Provide a consistent and usable error-checking mechanism Recommendation No 

CERT-C:API05-C Use conformant array parameters Recommendation No 

CERT-C:API07-C Enforce type safety Recommendation Yes 

CERT-C:API09-C Compatible values should have the same type Recommendation No 

CERT-C:API10-C APIs should have security options enabled by default Recommendation No 

CERT-C:ARR00-C Understand how arrays work Recommendation No 

CERT-C:ARR01-C Do not apply the sizeof operator to a pointer when taking the size of an array Recommendation Yes 

CERT-C:ARR02-C Explicitly specify array bounds, even if implicitly defined by an initializer Recommendation No 

CERT-C:ARR30-C Do not form or use out-of-bounds pointers or array subscripts Rule Yes 

CERT-C:ARR32-C Ensure size arguments for variable length arrays are in a valid range Rule Yes 

CERT-C:ARR36-C Do not subtract or compare two pointers that do not refer to the same array Rule Yes 

CERT-C:ARR37-C Do not add or subtract an integer to a pointer to a non-array object Rule Yes 

CERT-C:ARR38-C Guarantee that library functions do not form invalid pointers Rule Yes 

CERT-C:ARR39-C Do not add or subtract a scaled integer to a pointer Rule Yes 

CERT-C:CON01-C Acquire and release synchronization primitives in the same module, at the same level of abstraction Recommendation Yes 

CERT-C:CON02-C Do not use volatile as a synchronization primitive Recommendation No 

CERT-C:CON03-C Ensure visibility when accessing shared variables Recommendation No 

CERT-C:CON04-C Join or detach threads even if their exit status is unimportant Recommendation No 

CERT-C:CON05-C Do not perform operations that can block while holding a lock Recommendation Yes 

CERT-C:CON06-C Ensure that every mutex outlives the data it protects Recommendation Yes 

CERT-C:CON07-C Ensure that compound operations on shared variables are atomic Recommendation Yes 

CERT-C:CON08-C Do not assume that a group of calls to independently atomic methods is atomic Recommendation No 

CERT-C:CON09-C Avoid the ABA problem when using lock-free algorithms Recommendation No 

CERT-C:CON30-C Clean up thread-specific storage Rule Yes 

CERT-C:CON31-C Do not destroy a mutex while it is locked Rule Yes 

CERT-C:CON32-C Prevent data races when accessing bit-fields from multiple threads Rule Yes 

CERT-C:CON33-C Avoid race conditions when using library functions Rule Yes 

CERT-C:CON34-C Declare objects shared between threads with appropriate storage durations Rule Yes 

CERT-C:CON35-C Avoid deadlock by locking in a predefined order Rule Yes 

CERT-C:CON36-C Wrap functions that can spuriously wake up in a loop Rule Yes 

CERT-C:CON37-C Do not call signal() in a multithreaded program Rule Yes 

CERT-C:CON38-C Preserve thread safety and liveness when using condition variables Rule Yes 

CERT-C:CON39-C Do not join or detach a thread that was previously joined or detached Rule Yes 

CERT-C:CON40-C Do not refer to an atomic variable twice in an expression Rule Yes 

CERT-C:CON41-C Wrap functions that can fail spuriously in a loop Rule Yes 

CERT-C:CON43-C Do not allow data races in multithreaded code Rule Yes 



SEI CERT-C RULES AND RECOMMENDATIONS MAPPED TO CODESONAR® 8.0 WARNING CLASSES 

11   TECHNICAL WHITEPAPER 

 

 

CERT-C:DCL00-C Const-qualify immutable objects Recommendation Yes 

CERT-C:DCL01-C Do not reuse variable names in subscopes Recommendation Yes 

CERT-C:DCL02-C Use visually distinct identifiers Recommendation Yes 

CERT-C:DCL03-C Use a static assertion to test the value of a constant expression Recommendation No 

CERT-C:DCL04-C Do not declare more than one variable per declaration Recommendation Yes 

CERT-C:DCL05-C Use typedefs of non-pointer types only Recommendation Yes 

CERT-C:DCL06-C Use meaningful symbolic constants to represent literal values Recommendation No 

CERT-C:DCL07-C Include the appropriate type information in function declarators Recommendation Yes 

CERT-C:DCL08-C Properly encode relationships in constant definitions Recommendation No 

CERT-C:DCL09-C Declare functions that return errno with a return type of errno_t Recommendation No 

CERT-C:DCL10-C Maintain the contract between the writer and caller of variadic functions Recommendation No 

CERT-C:DCL11-C Understand the type issues associated with variadic functions Recommendation Yes 

CERT-C:DCL12-C Implement abstract data types using opaque types Recommendation No 

CERT-C:DCL13-C Declare function parameters that are pointers to values not changed by the function as const Recommendation Yes 

CERT-C:DCL15-C Declare file-scope objects or functions that do not need external linkage as static Recommendation Yes 

CERT-C:DCL16-C Use "L," not "l," to indicate a long value Recommendation Yes 

CERT-C:DCL17-C Beware of miscompiled volatile-qualified variables Recommendation No 

CERT-C:DCL18-C Do not begin integer constants with 0 when specifying a decimal value Recommendation Yes 

CERT-C:DCL19-C Minimize the scope of variables and functions Recommendation Yes 

CERT-C:DCL20-C Explicitly specify void when a function accepts no arguments Recommendation Yes 

CERT-C:DCL21-C Understand the storage of compound literals Recommendation No 

CERT-C:DCL22-C Use volatile for data that cannot be cached Recommendation No 

CERT-C:DCL23-C Guarantee that mutually visible identifiers are unique Recommendation Yes 

CERT-C:DCL30-C Declare objects with appropriate storage durations Rule Yes 

CERT-C:DCL31-C Declare identifiers before using them Rule No 

CERT-C:DCL36-C Do not declare an identifier with conflicting linkage classifications Rule Yes 

CERT-C:DCL37-C Do not declare or define a reserved identifier Rule Yes 

CERT-C:DCL38-C Use the correct syntax when declaring a flexible array member Rule Yes 

CERT-C:DCL39-C Avoid information leakage when passing a structure across a trust boundary Rule Yes 

CERT-C:DCL40-C Do not create incompatible declarations of the same function or object Rule Yes 

CERT-C:DCL41-C Do not declare variables inside a switch statement before the first case label Rule Yes 

CERT-C:ENV01-C Do not make assumptions about the size of an environment variable Recommendation Yes 

CERT-C:ENV02-C Beware of multiple environment variables with the same effective name Recommendation No 

CERT-C:ENV03-C Sanitize the environment when invoking external programs Recommendation No 

CERT-C:ENV30-C Do not modify the object referenced by the return value of certain functions Rule Yes 

CERT-C:ENV31-C Do not rely on an environment pointer following an operation that may invalidate it Rule Yes 

CERT-C:ENV32-C All exit handlers must return normally Rule Yes 

CERT-C:ENV33-C Do not call system() Rule Yes 

CERT-C:ENV34-C Do not store pointers returned by certain functions Rule Yes 

CERT-C:ERR00-C Adopt and implement a consistent and comprehensive error-handling policy Recommendation No 

CERT-C:ERR01-C Use ferror() rather than errno to check for FILE stream errors Recommendation No 

CERT-C:ERR02-C Avoid in-band error indicators Recommendation No 

CERT-C:ERR03-C Use runtime-constraint handlers when calling the bounds-checking interfaces Recommendation No 

CERT-C:ERR04-C Choose an appropriate termination strategy Recommendation No 

CERT-C:ERR05-C Application-independent code should provide error detection without dictating error handling Recommendation No 

CERT-C:ERR06-C Understand the termination behavior of assert() and abort() Recommendation No 

CERT-C:ERR07-C Prefer functions that support error checking over equivalent functions that don't Recommendation No 

CERT-C:ERR30-C Take care when reading errno Rule Yes 



SEI CERT-C RULES AND RECOMMENDATIONS MAPPED TO CODESONAR® 8.0 WARNING CLASSES 

12   TECHNICAL WHITEPAPER 

 

 

CERT-C:ERR32-C Do not rely on indeterminate values of errno Rule No 

CERT-C:ERR33-C Detect and handle standard library errors Rule Yes 

CERT-C:ERR34-C Detect errors when converting a string to a number Rule Yes 

CERT-C:EXP00-C Use parentheses for precedence of operation Recommendation Yes 

CERT-C:EXP02-C Be aware of the short-circuit behavior of the logical AND and OR operators Recommendation No 

CERT-C:EXP03-C Do not assume the size of a structure is the sum of the sizes of its members Recommendation No 

CERT-C:EXP05-C Do not cast away a const qualification Recommendation Yes 

CERT-C:EXP07-C Do not diminish the benefits of constants by assuming their values in expressions Recommendation No 

CERT-C:EXP08-C Ensure pointer arithmetic is used correctly Recommendation Yes 

CERT-C:EXP09-C Use sizeof to determine the size of a type or variable Recommendation No 

CERT-C:EXP10-C Do not depend on the order of evaluation of subexpressions or the order in which side effects take place Recommendation Yes 

CERT-C:EXP11-C Do not make assumptions regarding the layout of structures with bit-fields Recommendation Yes 

CERT-C:EXP12-C Do not ignore values returned by functions Recommendation Yes 

CERT-C:EXP13-C Treat relational and equality operators as if they were nonassociative Recommendation No 

CERT-C:EXP14-C Beware of integer promotion when performing bitwise operations on integer types smaller than int Recommendation Yes 

CERT-C:EXP15-C Do not place a semicolon on the same line as an if, for, or while statement Recommendation Yes 

CERT-C:EXP16-C Do not compare function pointers to constant values Recommendation No 

CERT-C:EXP19-C Use braces for the body of an if, for, or while statement Recommendation No 

CERT-C:EXP20-C Perform explicit tests to determine success, true and false, and equality Recommendation No 

CERT-C:EXP30-C Do not depend on the order of evaluation for side effects Rule Yes 

CERT-C:EXP32-C Do not access a volatile object through a nonvolatile reference Rule No 

CERT-C:EXP33-C Do not read uninitialized memory Rule Yes 

CERT-C:EXP34-C Do not dereference null pointers Rule Yes 

CERT-C:EXP35-C Do not modify objects with temporary lifetime Rule No 

CERT-C:EXP36-C Do not cast pointers into more strictly aligned pointer types Rule Yes 

CERT-C:EXP37-C Call functions with the correct number and type of arguments Rule Yes 

CERT-C:EXP39-C Do not access a variable through a pointer of an incompatible type Rule Yes 

CERT-C:EXP40-C Do not modify constant objects Rule Yes 

CERT-C:EXP42-C Do not compare padding data Rule Yes 

CERT-C:EXP43-C Avoid undefined behavior when using restrict-qualified pointers Rule Yes 

CERT-C:EXP44-C Do not rely on side effects in operands to sizeof, _Alignof, or _Generic Rule Yes 

CERT-C:EXP45-C Do not perform assignments in selection statements Rule Yes 

CERT-C:EXP46-C Do not use a bitwise operator with a Boolean-like operand Rule Yes 

CERT-C:EXP47-C Do not call va_arg with an argument of the incorrect type Rule Yes 

CERT-C:FIO01-C Be careful using functions that use file names for identification Recommendation Yes 

CERT-C:FIO02-C Canonicalize path names originating from tainted sources Recommendation Yes 

CERT-C:FIO03-C Do not make assumptions about fopen() and file creation Recommendation Yes 

CERT-C:FIO05-C Identify files using multiple file attributes Recommendation No 

CERT-C:FIO06-C Create files with appropriate access permissions Recommendation Yes 

CERT-C:FIO08-C Take care when calling remove() on an open file Recommendation No 

CERT-C:FIO09-C Be careful with binary data when transferring data across systems Recommendation No 

CERT-C:FIO10-C Take care when using the rename() function Recommendation No 

CERT-C:FIO11-C Take care when specifying the mode parameter of fopen() Recommendation Yes 

CERT-C:FIO13-C Never push back anything other than one read character Recommendation No 

CERT-C:FIO14-C Understand the difference between text mode and binary mode with file streams Recommendation No 

CERT-C:FIO15-C Ensure that file operations are performed in a secure directory Recommendation No 

CERT-C:FIO17-C Do not rely on an ending null character when using fread() Recommendation No 

CERT-C:FIO18-C Never expect fwrite() to terminate the writing process at a null character Recommendation No 



SEI CERT-C RULES AND RECOMMENDATIONS MAPPED TO CODESONAR® 8.0 WARNING CLASSES 

13   TECHNICAL WHITEPAPER 

 

 

CERT-C:FIO19-C Do not use fseek() and ftell() to compute the size of a regular file Recommendation No 

CERT-C:FIO20-C Avoid unintentional truncation when using fgets() or fgetws() Recommendation No 

CERT-C:FIO21-C Do not create temporary files in shared directories Recommendation Yes 

CERT-C:FIO22-C Close files before spawning processes Recommendation No 

CERT-C:FIO23-C Do not exit with unflushed data in stdout or stderr Recommendation No 

CERT-C:FIO24-C Do not open a file that is already open Recommendation Yes 

CERT-C:FIO30-C Exclude user input from format strings Rule Yes 

CERT-C:FIO32-C Do not perform operations on devices that are only appropriate for files Rule No 

CERT-C:FIO34-C Distinguish between characters read from a file and EOF or WEOF Rule Yes 

CERT-C:FIO37-C Do not assume that fgets() or fgetws() returns a nonempty string when successful Rule Yes 

CERT-C:FIO38-C Do not copy a FILE object Rule No 

CERT-C:FIO39-C Do not alternately input and output from a stream without an intervening flush or positioning call Rule Yes 

CERT-C:FIO40-C Reset strings on fgets() or fgetws() failure Rule Yes 

CERT-C:FIO41-C Do not call getc(), putc(), getwc(), or putwc() with a stream argument that has side effects Rule Yes 

CERT-C:FIO42-C Close files when they are no longer needed Rule Yes 

CERT-C:FIO44-C Only use values for fsetpos() that are returned from fgetpos() Rule No 

CERT-C:FIO45-C Avoid TOCTOU race conditions while accessing files Rule Yes 

CERT-C:FIO46-C Do not access a closed file Rule Yes 

CERT-C:FIO47-C Use valid format strings Rule Yes 

CERT-C:FLP00-C Understand the limitations of floating-point numbers Recommendation No 

CERT-C:FLP01-C Take care in rearranging floating-point expressions Recommendation No 

CERT-C:FLP02-C Avoid using floating-point numbers when precise computation is needed Recommendation No 

CERT-C:FLP03-C Detect and handle floating-point errors Recommendation No 

CERT-C:FLP04-C Check floating-point inputs for exceptional values Recommendation No 

CERT-C:FLP05-C Do not use denormalized numbers Recommendation No 

CERT-C:FLP06-C Convert integers to floating point for floating-point operations Recommendation Yes 

CERT-C:FLP07-C Cast the return value of a function that returns a floating-point type Recommendation No 

CERT-C:FLP30-C Do not use floating-point variables as loop counters Rule Yes 

CERT-C:FLP32-C Prevent or detect domain and range errors in math functions Rule Yes 

CERT-C:FLP34-C Ensure that floating-point conversions are within range of the new type Rule Yes 

CERT-C:FLP36-C Preserve precision when converting integral values to floating-point type Rule Yes 

CERT-C:FLP37-C Do not use object representations to compare floating-point values Rule Yes 

CERT-C:INT00-C Understand the data model used by your implementation(s) Recommendation No 

CERT-C:INT01-C Use rsize_t or size_t for all integer values representing the size of an object Recommendation No 

CERT-C:INT02-C Understand integer conversion rules Recommendation Yes 

CERT-C:INT04-C Enforce limits on integer values originating from tainted sources Recommendation Yes 

CERT-C:INT05-C Do not use input functions to convert character data if they cannot handle all possible inputs Recommendation Yes 

CERT-C:INT07-C Use only explicitly signed or unsigned char type for numeric values Recommendation Yes 

CERT-C:INT08-C Verify that all integer values are in range Recommendation Yes 

CERT-C:INT09-C Ensure enumeration constants map to unique values Recommendation Yes 

CERT-C:INT10-C Do not assume a positive remainder when using the % operator Recommendation No 

CERT-C:INT12-C Do not make assumptions about the type of a plain int bit-field when used in an expression Recommendation Yes 

CERT-C:INT13-C Use bitwise operators only on unsigned operands Recommendation Yes 

CERT-C:INT14-C Avoid performing bitwise and arithmetic operations on the same data Recommendation No 

CERT-C:INT15-C Use intmax_t or uintmax_t for formatted IO on programmer-defined integer types Recommendation No 

CERT-C:INT16-C Do not make assumptions about representation of signed integers Recommendation No 

CERT-C:INT17-C Define integer constants in an implementation-independent manner Recommendation No 

CERT-C:INT18-C Evaluate integer expressions in a larger size before comparing or assigning to that size Recommendation Yes 



SEI CERT-C RULES AND RECOMMENDATIONS MAPPED TO CODESONAR® 8.0 WARNING CLASSES 

14   TECHNICAL WHITEPAPER 

 

 

CERT-C:INT30-C Ensure that unsigned integer operations do not wrap Rule Yes 

CERT-C:INT31-C Ensure that integer conversions do not result in lost or misinterpreted data Rule Yes 

CERT-C:INT32-C Ensure that operations on signed integers do not result in overflow Rule Yes 

CERT-C:INT33-C Ensure that division and remainder operations do not result in divide-by-zero errors Rule Yes 

CERT-C:INT34-C 
Do not shift an expression by a negative number of bits or by greater than or equal to the number of bits 
that exist in the operand 

Rule Yes 

CERT-C:INT35-C Use correct integer precisions Rule Yes 

CERT-C:INT36-C Converting a pointer to integer or integer to pointer Rule Yes 

CERT-C:MEM00-C Allocate and free memory in the same module, at the same level of abstraction Recommendation Yes 

CERT-C:MEM01-C Store a new value in pointers immediately after free() Recommendation Yes 

CERT-C:MEM02-C Immediately cast the result of a memory allocation function call into a pointer to the allocated type Recommendation No 

CERT-C:MEM03-C Clear sensitive information stored in reusable resources Recommendation No 

CERT-C:MEM04-C Beware of zero-length allocations Recommendation No 

CERT-C:MEM05-C Avoid large stack allocations Recommendation Yes 

CERT-C:MEM06-C Ensure that sensitive data is not written out to disk Recommendation No 

CERT-C:MEM07-C Ensure that the arguments to calloc(), when multiplied, do not wrap Recommendation Yes 

CERT-C:MEM10-C Define and use a pointer validation function Recommendation No 

CERT-C:MEM11-C Do not assume infinite heap space Recommendation Yes 

CERT-C:MEM12-C Consider using a goto chain when leaving a function on error when using and releasing resources Recommendation No 

CERT-C:MEM30-C Do not access freed memory Rule Yes 

CERT-C:MEM31-C Free dynamically allocated memory when no longer needed Rule Yes 

CERT-C:MEM33-C Allocate and copy structures containing a flexible array member dynamically Rule Yes 

CERT-C:MEM34-C Only free memory allocated dynamically Rule Yes 

CERT-C:MEM35-C Allocate sufficient memory for an object Rule Yes 

CERT-C:MEM36-C Do not modify the alignment of objects by calling realloc() Rule Yes 

CERT-C:MSC00-C Compile cleanly at high warning levels Recommendation Yes 

CERT-C:MSC01-C Strive for logical completeness Recommendation No 

CERT-C:MSC04-C Use comments consistently and in a readable fashion Recommendation No 

CERT-C:MSC05-C Do not manipulate time_t typed values directly Recommendation No 

CERT-C:MSC06-C Beware of compiler optimizations Recommendation Yes 

CERT-C:MSC07-C Detect and remove dead code Recommendation Yes 

CERT-C:MSC09-C Character encoding: Use subset of ASCII for safety Recommendation No 

CERT-C:MSC10-C Character encoding: UTF8-related issues Recommendation No 

CERT-C:MSC11-C Incorporate diagnostic tests using assertions Recommendation Yes 

CERT-C:MSC12-C Detect and remove code that has no effect or is never executed Recommendation Yes 

CERT-C:MSC13-C Detect and remove unused values Recommendation Yes 

CERT-C:MSC14-C Do not introduce unnecessary platform dependencies Recommendation No 

CERT-C:MSC15-C Do not depend on undefined behavior Recommendation No 

CERT-C:MSC17-C Finish every set of statements associated with a case label with a break statement Recommendation Yes 

CERT-C:MSC18-C Be careful while handling sensitive data, such as passwords, in program code Recommendation Yes 

CERT-C:MSC19-C For functions that return an array, prefer returning an empty array over a null value Recommendation No 

CERT-C:MSC20-C Do not use a switch statement to transfer control into a complex block Recommendation Yes 

CERT-C:MSC21-C Use robust loop termination conditions Recommendation Yes 

CERT-C:MSC22-C Use the setjmp(), longjmp() facility securely Recommendation Yes 

CERT-C:MSC23-C Beware of vendor-specific library and language differences Recommendation Yes 

CERT-C:MSC24-C Do not use deprecated or obsolescent functions Recommendation Yes 

CERT-C:MSC25-C Do not use insecure or weak cryptographic algorithms Recommendation Yes 

CERT-C:MSC30-C Do not use the rand() function for generating pseudorandom numbers Rule Yes 



SEI CERT-C RULES AND RECOMMENDATIONS MAPPED TO CODESONAR® 8.0 WARNING CLASSES 

15   TECHNICAL WHITEPAPER 

 

 

CERT-C:MSC32-C Properly seed pseudorandom number generators Rule Yes 

CERT-C:MSC33-C Do not pass invalid data to the asctime() function Rule Yes 

CERT-C:MSC37-C Ensure that control never reaches the end of a non-void function Rule Yes 

CERT-C:MSC38-C Do not treat a predefined identifier as an object if it might only be implemented as a macro Rule Yes 

CERT-C:MSC39-C Do not call va_arg() on a va_list that has an indeterminate value Rule Yes 

CERT-C:MSC40-C Do not violate constraints Rule No 

CERT-C:MSC41-C Never hard code sensitive information Rule Yes 

CERT-C:POS01-C Check for the existence of links when dealing with files Recommendation No 

CERT-C:POS02-C Follow the principle of least privilege Recommendation No 

CERT-C:POS04-C Avoid using PTHREAD_MUTEX_NORMAL type mutex locks Recommendation No 

CERT-C:POS05-C Limit access to files by creating a jail Recommendation Yes 

CERT-C:POS30-C Use the readlink() function properly Rule Yes 

CERT-C:POS34-C Do not call putenv() with a pointer to an automatic variable as the argument Rule Yes 

CERT-C:POS35-C Avoid race conditions while checking for the existence of a symbolic link Rule No 

CERT-C:POS36-C Observe correct revocation order while relinquishing privileges Rule No 

CERT-C:POS37-C Ensure that privilege relinquishment is successful Rule No 

CERT-C:POS38-C Beware of race conditions when using fork and file descriptors Rule Yes 

CERT-C:POS39-C Use the correct byte ordering when transferring data between systems Rule No 

CERT-C:POS44-C Do not use signals to terminate threads Rule Yes 

CERT-C:POS47-C Do not use threads that can be canceled asynchronously Rule No 

CERT-C:POS48-C Do not unlock or destroy another POSIX thread's mutex Rule Yes 

CERT-C:POS49-C 
When data must be accessed by multiple threads, provide a mutex and guarantee no adjacent data is also 
accessed 

Rule Yes 

CERT-C:POS50-C Declare objects shared between POSIX threads with appropriate storage durations Rule No 

CERT-C:POS51-C Avoid deadlock with POSIX threads by locking in predefined order Rule Yes 

CERT-C:POS52-C Do not perform operations that can block while holding a POSIX lock Rule Yes 

CERT-C:POS53-C Do not use more than one mutex for concurrent waiting operations on a condition variable Rule No 

CERT-C:POS54-C Detect and handle POSIX library errors Rule Yes 

CERT-C:PRE00-C Prefer inline or static functions to function-like macros Recommendation Yes 

CERT-C:PRE01-C Use parentheses within macros around parameter names Recommendation No 

CERT-C:PRE02-C Macro replacement lists should be parenthesized Recommendation Yes 

CERT-C:PRE03-C Prefer typedefs to defines for encoding non-pointer types Recommendation No 

CERT-C:PRE04-C Do not reuse a standard header file name Recommendation No 

CERT-C:PRE05-C Understand macro replacement when concatenating tokens or performing stringification Recommendation Yes 

CERT-C:PRE06-C Enclose header files in an include guard Recommendation No 

CERT-C:PRE07-C Avoid using repeated question marks Recommendation No 

CERT-C:PRE08-C Guarantee that header file names are unique Recommendation No 

CERT-C:PRE09-C Do not replace secure functions with deprecated or obsolescent functions Recommendation No 

CERT-C:PRE10-C Wrap multistatement macros in a do-while loop Recommendation No 

CERT-C:PRE11-C Do not conclude macro definitions with a semicolon Recommendation Yes 

CERT-C:PRE12-C Do not define unsafe macros Recommendation No 

CERT-C:PRE13-C Use the Standard predefined macros to test for versions and features. Recommendation No 

CERT-C:PRE30-C Do not create a universal character name through concatenation Rule Yes 

CERT-C:PRE31-C Avoid side effects in arguments to unsafe macros Rule Yes 

CERT-C:PRE32-C Do not use preprocessor directives in invocations of function-like macros Rule Yes 

CERT-C:SIG00-C Mask signals handled by noninterruptible signal handlers Recommendation Yes 

CERT-C:SIG01-C Understand implementation-specific details regarding signal handler persistence Recommendation Yes 

CERT-C:SIG02-C Avoid using signals to implement normal functionality Recommendation Yes 



SEI CERT-C RULES AND RECOMMENDATIONS MAPPED TO CODESONAR® 8.0 WARNING CLASSES 

16   TECHNICAL WHITEPAPER 

 

 

CERT-C:SIG30-C Call only asynchronous-safe functions within signal handlers Rule Yes 

CERT-C:SIG31-C Do not access shared objects in signal handlers Rule Yes 

CERT-C:SIG34-C Do not call signal() from within interruptible signal handlers Rule Yes 

CERT-C:SIG35-C Do not return from a computational exception signal handler Rule Yes 

CERT-C:STR00-C Represent characters using an appropriate type Recommendation Yes 

CERT-C:STR01-C Adopt and implement a consistent plan for managing strings Recommendation No 

CERT-C:STR02-C Sanitize data passed to complex subsystems Recommendation Yes 

CERT-C:STR03-C Do not inadvertently truncate a string Recommendation Yes 

CERT-C:STR04-C Use plain char for characters in the basic character set Recommendation Yes 

CERT-C:STR05-C Use pointers to const when referring to string literals Recommendation Yes 

CERT-C:STR06-C Do not assume that strtok() leaves the parse string unchanged Recommendation No 

CERT-C:STR07-C Use the bounds-checking interfaces for string manipulation Recommendation Yes 

CERT-C:STR08-C Use managed strings for development of new string manipulation code Recommendation No 

CERT-C:STR09-C Don't assume numeric values for expressions with type plain character Recommendation No 

CERT-C:STR10-C Do not concatenate different type of string literals Recommendation No 

CERT-C:STR11-C Do not specify the bound of a character array initialized with a string literal Recommendation No 

CERT-C:STR30-C Do not attempt to modify string literals Rule Yes 

CERT-C:STR31-C Guarantee that storage for strings has sufficient space for character data and the null terminator Rule Yes 

CERT-C:STR32-C Do not pass a non-null-terminated character sequence to a library function that expects a string Rule Yes 

CERT-C:STR34-C Cast characters to unsigned char before converting to larger integer sizes Rule Yes 

CERT-C:STR37-C Arguments to character-handling functions must be representable as an unsigned char Rule Yes 

CERT-C:STR38-C Do not confuse narrow and wide character strings and functions Rule Yes 

CERT-C:WIN00-C Be specific when dynamically loading libraries Recommendation Yes 

CERT-C:WIN01-C Do not forcibly terminate execution Recommendation No 

CERT-C:WIN02-C Restrict privileges when spawning child processes Recommendation Yes 

CERT-C:WIN03-C Understand HANDLE inheritance Recommendation No 

CERT-C:WIN04-C Consider encrypting function pointers Recommendation No 

CERT-C:WIN30-C Properly pair allocation and deallocation functions Rule Yes 

 


