

JPL INSTITUTIONAL CODING STANDARD FOR THE
C PROGRAMMING LANGUAGE |

CLOSE & BROAD MAPPING TO CODESONAR® 8.0

TRUSTED LEADERS OF SOFTWARE ASSURANCE AND ADVANCED CYBER-SECURITY SOLUTIONS

WWW.CODESECURE.COM

http://www.codesecure.com/

INTRODUCTION

The following table shows the CodeSonar warning classes that are associated with JPL rules.

Note close and broad mappings are identical, thus only one chart below to reflect both close and
broad mapping.

Rule Rule Name Supported

JPL:1 Do not stray outside the language definition. Yes

JPL:2 Compile with all warnings enabled; use static source code analyzers. Yes

JPL:3 Use verifiable loop bounds for all loops meant to be terminating. Yes

JPL:4 Do not use direct or indirect recursion. Yes

JPL:5 Do not use dynamic memory allocation after task initialization. Yes

JPL:6 Use IPC messages for task communication. No

JPL:7 Do not use task delays for task synchronization. Yes

JPL:8 Explicitly transfer write-permission (ownership) for shared data objects. No

JPL:9 Place restrictions on the use of semaphores and locks. Yes

JPL:10 Use memory protection, safety margins, barrier patterns. No

JPL:11 Do not use goto, setjmp or longjmp. Yes

JPL:12 Do not use selective value assignments to elements of an enum list. Yes

JPL:13 Declare data objects at smallest possible level of scope. Yes

JPL:14 Check the return value of non-void functions, or explicitly cast to (void). Yes

JPL:15 Check the validity of values passed to functions. Yes

JPL:16 Use static and dynamic assertions as sanity checks. Yes

JPL:17 Use U32, I16, etc instead of predefined C data types such as int, short, etc. Yes

JPL:18 Make the order of evaluation in compound expressions explicit. Yes

JPL:19 Do not use expressions with side effects. Yes

JPL:20 Make only very limited use of the C pre-processor. Yes

JPL:21 Do not define macros within a function or a block. Yes

JPL:22 Do not undefine or redefine macros. Yes

JPL:23 Place #else, #elif, and #endif in the same file as the matching #if or #ifdef. Yes

JPL:24 Place no more than one statement or declaration per line of text. Yes

JPL:25 Use short functions with a limited number of parameters. Yes

JPL:26 Use no more than two levels of indirection per declaration. Yes

JPL:27 Use no more than two levels of dereferencing per object reference. Yes

JPL:28 Do not hide dereference operations inside macros or typedefs. Yes

JPL:29 Do not use non-constant function pointers. No

JPL:30 Do not cast function pointers into other types. Yes

JPL:31 Do not place code or declarations before an #include directive. Yes

CodeSecure is a leading global provider of application testing (AST) solutions used by the

world’s most security conscious organizations to detect, measure, analyze and resolve

vulnerabilities for software they develop or use. The company is also a trusted cybersecurity

and artificial intelligence research partner for the nation’s civil, defense, and intelligence

agencies.

CodeSonar and CodeSentry are registered trademarks of CodeSecure, Inc.

© CodeSecure, Inc. All rights reserved.

