
1 TECHNICAL

WHITEPAPER

MISRA C:2012 GUIDELINES FOR THE USE
OF THE C LANGUAGE IN CRITICAL
SYSTEMS (MARCH 2013) |
CODESONAR® 8.0
INCLUDING MISRA C:2012 AMENDMENT 1 ADDITIONAL

SECURITY GUIDELINES FOR MISRA C:2012 (APRIL 2016)

TRUSTED LEADERS OF SOFTWARE ASSURANCE AND ADVANCED CYBER-SECURITY SOLUTIONS

WWW.CODESECURE.COM

http://www.codesecure.com/

CODESONAR 8.0 | MISRA C:2012 GUIDELINES FOR THE USE OF THE C LANGUAGE IN CRITICAL SYSTEMS
(MARCH 2013)

2 TECHNICAL WHITEPAPER

INTRODUCTION

The MISRA C:2012 standard aims to foster safety, reliability, and portability of programs written

in ISO C for embedded systems. It is used in a wide range of industries, including automotive,

aero- space, medical devices, and industrial control.

CodeSonar 8.0 includes a large number of warning classes that support checking for the MISRA

C:2012 guidelines. Every CodeSonar warning report includes the numbers of any MISRA

C:2012 rules and directives that are closely mapped to the warning’s class. (The close mapping

for a warning class is the set of categories—including MISRA C:2012 rule and directive

numbers—that most closely match the class, if any).

You can configure CodeSonar to enable and disable warning classes mapped to specific MISRA

C:2012 rules and directives, or use build presets to enable all warning classes that are closely

mapped to any MISRA C:2012 rules and directives. In addition, you can use the CodeSonar

search function to find warnings related to specific MISRA C:2012 rules or directives, or to any

MISRA C:2012 rule or directive.

For more information on MISRA C:

https://www.misra.org.uk/MISRAChome/tabid/181/Default.aspx

https://www.misra.org.uk/MISRAChome/tabid/181/Default.aspx

CODESONAR 8.0 | MISRA C:2012 GUIDELINES FOR THE USE OF THE C LANGUAGE IN CRITICAL SYSTEMS
(MARCH 2013)

3 TECHNICAL WHITEPAPER

MISRA C:2012 CLOSE MAPPING (CODESONAR V8.0)

The following table contains CodeSonar classes that are closely mapped to specific MISRA C:2012 rules

and directives.

Rule Rule Name Category Decidability Supported

Misra2012:1.1
The program shall contain no violations of the standard C syntax and constraints, and
shall not exceed the implementation's translation limits

Required Decidable Yes

Misra2012:1.2 Language extensions should not be used Advisory Undecidable Yes

Misra2012:1.3 There shall be no occurrence of undefined or critical unspecified behaviour Required Undecidable Yes

Misra2012:1.4 Emergent language features shall not be used Required Decidable Yes

Misra2012:1.5 Obsolescent language features shall not be used Required Undecidable Yes

Misra2012:2.1 A project shall not contain unreachable code Required Undecidable Yes

Misra2012:2.2 A project shall not contain dead code Required Undecidable Yes

Misra2012:2.3 A project should not contain unused type declarations Advisory Decidable Yes

Misra2012:2.4 A project should not contain unused tag declarations Advisory Decidable Yes

Misra2012:2.5 A project should not contain unused macro declarations Advisory Decidable Yes

Misra2012:2.6 A function should not contain unused label declarations Advisory Decidable Yes

Misra2012:2.7 A function should not contain unused parameters Advisory Decidable Yes

Misra2012:2.8 A project should not contain unused object definitions Advisory Decidable Yes

Misra2012:3.1 The character sequences /* and // shall not be used within a comment Required Decidable Yes

Misra2012:3.2 Line-splicing shall not be used in // comments Required Decidable Yes

Misra2012:4.1 Octal and hexadecimal escape sequences shall be terminated Required Decidable Yes

Misra2012:4.2 Trigraphs should not be used Advisory Decidable Yes

Misra2012:5.1 External identifiers shall be distinct Required Decidable Yes

Misra2012:5.2 Identifiers declared in the same scope and name space shall be distinct Required Decidable Yes

Misra2012:5.3
An identifier declared in an inner scope shall not hide an identifier declared in an outer
scope

Required Decidable Yes

Misra2012:5.4 Macro identifiers shall be distinct Required Decidable Yes

Misra2012:5.5 Identifiers shall be distinct from macro names Required Decidable Yes

Misra2012:5.6 A typedef name shall be a unique identifier Required Decidable Yes

Misra2012:5.7 A tag name shall be a unique identifier Required Decidable Yes

Misra2012:5.8 Identifiers that define objects or functions with external linkage shall be unique Required Decidable Yes

Misra2012:5.9 Identifiers that define objects or functions with internal linkage should be unique Advisory Decidable Yes

Misra2012:6.1 Bit-fields shall only be declared with an appropriate type Required Decidable Yes

Misra2012:6.2 Single-bit named bit fields shall not be of a signed type Required Decidable Yes

Misra2012:6.3 A bit field shall not be declared as a member of a union Required Decidable Yes

Misra2012:7.1 Octal constants shall not be used Required Decidable Yes

Misra2012:7.2
A "u" or "U" suffix shall be applied to all integer constants that are represented in an
unsigned type

Required Decidable Yes

Misra2012:7.3 The lowercase character "l" shall not be used in a literal suffix Required Decidable Yes

Misra2012:7.4
A string literal shall not be assigned to an object unless the object's type is "pointer to
const-qualified char"

Required Decidable Yes

Misra2012:7.5 The argument of an integer constant macro shall have an appropriate form Mandatory Decidable Yes

Misra2012:7.6
The small integer variants of the minimum-width integer constant macros shall not be
used

Required Decidable Yes

Misra2012:8.1 Types shall be explicitly specified Required Decidable Yes

Misra2012:8.2 Function types shall be in prototype form with named parameters Required Decidable Yes

Misra2012:8.3 All declarations of an object or function shall use the same names and type qualifiers Required Decidable Yes

CODESONAR 8.0 | MISRA C:2012 GUIDELINES FOR THE USE OF THE C LANGUAGE IN CRITICAL SYSTEMS
(MARCH 2013)

4 TECHNICAL WHITEPAPER

Misra2012:8.4
A compatible declaration shall be visible when an object or function with external
linkage is defined

Required Decidable Yes

Misra2012:8.5 An external object or function shall be declared once in one and only one file Required Decidable Yes

Misra2012:8.6 An identifier with external linkage shall have exactly one external definition Required Decidable Yes

Misra2012:8.7
Functions and objects should not be defined with external linkage if they are referenced
in only one translation unit

Advisory Decidable Yes

Misra2012:8.8
The static storage class specifier shall be used in all declarations of objects and

functions that have internal linkage
Required Decidable Yes

Misra2012:8.9
An object should be declared at block scope if its identifier only appears in a single

function
Advisory Decidable Yes

Misra2012:8.10 An inline function shall be declared with the static storage class Required Decidable Yes

Misra2012:8.11 When an array with external linkage is declared, its size should be explicitly specified Advisory Decidable Yes

Misra2012:8.12
Within an enumerator list, the value of an implicitly-specified enumeration constant
shall be unique

Required Decidable Yes

Misra2012:8.13 A pointer should point to a const-qualified type whenever possible Advisory Undecidable Yes

Misra2012:8.14 The restrict type qualifier shall not be used Required Decidable Yes

Misra2012:8.15
All declarations of an object with an explicit alignment specification shall specify the
same alignment

Required Decidable No

Misra2012:8.16 The alignment specification of zero should not appear in an object declaration Advisory Decidable No

Misra2012:8.17 At most one explicit alignment specifier should appear in an object declaration Advisory Decidable No

Misra2012:9.1
The value of an object with automatic storage duration shall not be read before it has
been set

Mandatory Undecidable Yes

Misra2012:9.2 The initializer for an aggregate or union shall be enclosed in braces Required Decidable Yes

Misra2012:9.3 Arrays shall not be partially initialized Required Decidable Yes

Misra2012:9.4 An element of an object shall not be initialized more than once Required Decidable Yes

Misra2012:9.5
Where designated initializers are used to initialize an array object the size of the array
shall be specified explicitly

Required Decidable Yes

Misra2012:9.6 An initializer using chained designators shall not contain initializers without designators Required Decidable No

Misra2012:9.7 Atomic objects shall be appropriately initialized before being accessed Mandatory Undecidable Yes

Misra2012:10.1 Operands shall not be of an inappropriate essential type Required Decidable Yes

Misra2012:10.2
Expressions of essentially character type shall not be used inappropriately in addition

and subtraction operations
Required Decidable Yes

Misra2012:10.3
The value of an expression shall not be assigned to an object with a narrower essential
type or of a different essential type category

Required Decidable Yes

Misra2012:10.4
Both operands of an operator in which the usual arithmetic conversions are performed
shall have the same essential type category

Required Decidable Yes

Misra2012:10.5 The value of an expression should not be cast to an inappropriate essential type Advisory Decidable Yes

Misra2012:10.6
The value of a composite expression shall not be assigned to an object with wider
essential type

Required Decidable Yes

Misra2012:10.7
If a composite expression is used as one operand of an operator in which the usual
arithmetic conversions are performed then the other operand shall not have wider
essential type

Required Decidable Yes

Misra2012:10.8
The value of a composite expression shall not be cast to a different essential type
category or a wider essential type

Required Decidable Yes

Misra2012:11.1 Conversions shall not be performed between a pointer to a function and any other type Required Decidable Yes

Misra2012:11.2
Conversions shall not be performed between a pointer to an incomplete type and any
other type

Required Decidable Yes

Misra2012:11.3
A conversion shall not be performed between a pointer to object type and a pointer to a

different object type
Required Decidable Yes

Misra2012:11.4 A conversion should not be performed between a pointer to object and an integer type Advisory Decidable Yes

Misra2012:11.5 A conversion should not be performed from pointer to void into pointer to object Advisory Decidable Yes

Misra2012:11.6 A cast shall not be performed between pointer to void and an arithmetic type Required Decidable Yes

CODESONAR 8.0 | MISRA C:2012 GUIDELINES FOR THE USE OF THE C LANGUAGE IN CRITICAL SYSTEMS
(MARCH 2013)

5 TECHNICAL WHITEPAPER

Misra2012:11.7
A cast shall not be performed between pointer to object and a non-integer arithmetic
type

Required Decidable Yes

Misra2012:11.8
A conversion shall not remove any const, volatile or _Atomic qualification from the
type pointed to by a pointer

Required Decidable Yes

Misra2012:11.9 The macro NULL shall be the only permitted form of integer null pointer constant Required Decidable Yes

Misra2012:11.10 The _Atomic qualifier shall not be applied to the incomplete type void Required Decidable Yes

Misra2012:12.1 The precedence of operators within expressions should be made explicit Advisory Decidable Yes

Misra2012:12.2
The right hand operand of a shift operator shall lie in the range zero to one less than the
width in bits of the essential type of the left hand operand

Required Undecidable Yes

Misra2012:12.3 The comma operator should not be used Advisory Decidable Yes

Misra2012:12.4 Evaluation of constant expressions should not lead to unsigned integer wrap-around Advisory Decidable Yes

Misra2012:12.5
The sizeof operator shall not have an operand which is a function parameter declared as
"array of type"

Mandatory Decidable Yes

Misra2012:12.6 Structure and union members of atomic objects shall not be directly accessed Required Decidable Yes

Misra2012:13.1 Initializer lists shall not contain persistent side effects Required Undecidable Yes

Misra2012:13.2
The value of an expression and its persistent side effects shall be the same under all
permitted evaluation orders and shall be independent from thread interleaving

Required Undecidable Yes

Misra2012:13.3
A full expression containing an increment (++) or decrement (--) operator should have
no other potential side effects other than that caused by the increment or decrement
operator

Advisory Decidable Yes

Misra2012:13.4 The result of an assignment operator should not be used Advisory Decidable Yes

Misra2012:13.5
The right hand operand of a logical && or || operator shall not contain persistent side
effects

Required Undecidable Yes

Misra2012:13.6
The operand of the sizeof operator shall not contain any expression which has potential
side effects

Mandatory Decidable Yes

Misra2012:14.1 A loop counter shall not have essentially floating type Required Undecidable Yes

Misra2012:14.2 A for loop shall be well-formed Required Undecidable Yes

Misra2012:14.3 Controlling expressions shall not be invariant Required Undecidable Yes

Misra2012:14.4
The controlling expression of an if statement and the controlling expression of an
iteration-statement shall have essentially Boolean type

Required Decidable Yes

Misra2012:15.1 The goto statement should not be used Advisory Decidable Yes

Misra2012:15.2 The goto statement shall jump to a label declared later in the same function Required Decidable Yes

Misra2012:15.3
Any label referenced by a goto statement shall be declared in the same block, or in any
block enclosing the goto statement

Required Decidable Yes

Misra2012:15.4
There should be no more than one break or goto statement used to terminate any
iteration statement

Advisory Decidable Yes

Misra2012:15.5 A function should have a single point of exit at the end Advisory Decidable Yes

Misra2012:15.6
The body of an iteration-statement or a selection-statement shall be a compound-
statement

Required Decidable Yes

Misra2012:15.7 All if ... else if constructs shall be terminated with an else statement Required Decidable Yes

Misra2012:16.1 All switch statements shall be well-formed Required Decidable Yes

Misra2012:16.2
A switch label shall only be used when the most closely-enclosing compound statement
is the body of a switch statement

Required Decidable Yes

Misra2012:16.3 An unconditional break statement shall terminate every switch-clause Required Decidable Yes

Misra2012:16.4 Every switch statement shall have a default label Required Decidable Yes

Misra2012:16.5
A default label shall appear as either the first or the last switch label of a switch
statement

Required Decidable Yes

Misra2012:16.6 Every switch statement shall have at least two switch-clauses Required Decidable Yes

Misra2012:16.7 A switch-expression shall not have essentially Boolean type Required Decidable Yes

Misra2012:17.1 The standard header file shall not be used Required Decidable Yes

Misra2012:17.2 Functions shall not call themselves, either directly or indirectly Required Undecidable Yes

CODESONAR 8.0 | MISRA C:2012 GUIDELINES FOR THE USE OF THE C LANGUAGE IN CRITICAL SYSTEMS
(MARCH 2013)

6 TECHNICAL WHITEPAPER

Misra2012:17.3 A function shall not be declared implicitly Mandatory Decidable Yes

Misra2012:17.4
All exit paths from a function with non-void return type shall have an explicit return
statement with an expression

Mandatory Decidable Yes

Misra2012:17.5
The function argument corresponding to a parameter declared to have an array type
shall have an appropriate number of elements

Advisory Undecidable Yes

Misra2012:17.6
The declaration of an array parameter shall not contain the static keyword between the [
]

Mandatory Decidable Yes

Misra2012:17.7 The value returned by a function having non-void return type shall be used Required Decidable Yes

Misra2012:17.8 A function parameter should not be modified Advisory Undecidable Yes

Misra2012:17.9 A function declared with a _Noreturn function specifier shall not return to its caller Mandatory Undecidable No

Misra2012:17.10 A function declared with a _Noreturn function specifier shall have void return type Required Decidable No

Misra2012:17.11 A function that never returns should be declared with a _Noreturn function specifier Advisory Undecidable No

Misra2012:17.12
A function identifier should only be used with either a preceding &, or with a
parenthesized parameter list

Advisory Decidable Yes

Misra2012:17.13 A function type shall not be type qualified Required Decidable No

Misra2012:18.1
A pointer resulting from arithmetic on a pointer operand shall address an element of the
same array as that pointer operand

Required Undecidable Yes

Misra2012:18.2
Subtraction between pointers shall only be applied to pointers that address elements of
the same array

Required Undecidable Yes

Misra2012:18.3
The relational operators >, >=, < and <= shall not be applied to expressions of pointer
type except where they point into the same object

Required Undecidable Yes

Misra2012:18.4 The +, -, += and -= operators should not be applied to an expression of pointer type Advisory Decidable Yes

Misra2012:18.5 Declarations should contain no more than two levels of pointer nesting Advisory Decidable Yes

Misra2012:18.6
The address of an object with automatic or thread-local storage shall not be copied to
another object that persists after the first object has ceased to exist

Required Undecidable Yes

Misra2012:18.7 Flexible array members shall not be declared Required Decidable Yes

Misra2012:18.8 Variable-length array types shall not be used Required Decidable Yes

Misra2012:18.9 An object with temporary lifetime shall not undergo array-to-pointer conversion Required Decidable No

Misra2012:18.10 Pointers to variably-modified array types shall not be used Mandatory Decidable Yes

Misra2012:19.1 An object shall not be assigned or copied to an overlapping object Mandatory Undecidable Yes

Misra2012:19.2 The union keyword should not be used Advisory Decidable Yes

Misra2012:20.1 #include directives should only be preceded by preprocessor directives or comments Advisory Decidable Yes

Misra2012:20.2
The ', " or \ characters and the /* or // character sequences shall not occur in a header file
name

Required Decidable Yes

Misra2012:20.3 The #include directive shall be followed by either a or "filename" sequence Required Decidable Yes

Misra2012:20.4 A macro shall not be defined with the same name as a keyword Required Decidable Yes

Misra2012:20.5 #undef should not be used Advisory Decidable Yes

Misra2012:20.6 Tokens that look like a preprocessing directive shall not occur within a macro argument Required Decidable Yes

Misra2012:20.7
Expressions resulting from the expansion of macro parameters shall be enclosed in
parentheses

Required Decidable Yes

Misra2012:20.8
The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0 or
1

Required Decidable Yes

Misra2012:20.9
All identifiers used in the controlling expression of #if or #elif preprocessing directives
shall be #define'd before evaluation

Required Decidable Yes

Misra2012:20.10 The # and ## preprocessor operators should not be used Advisory Decidable Yes

Misra2012:20.11
A macro parameter immediately following a # operator shall not immediately be
followed by a ## operator

Required Decidable Yes

Misra2012:20.12
A macro parameter used as an operand to the # or ## operators, which is itself subject to

further macro replacement, shall only be used as an operand to these operators
Required Decidable Yes

Misra2012:20.13 A line whose first token is # shall be a valid preprocessing directive Required Decidable Yes

CODESONAR 8.0 | MISRA C:2012 GUIDELINES FOR THE USE OF THE C LANGUAGE IN CRITICAL SYSTEMS
(MARCH 2013)

7 TECHNICAL WHITEPAPER

Misra2012:20.14
All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if,
#ifdef or #ifndef directive to which they are related

Required Decidable Yes

Misra2012:21.1 #define and #undef shall not be used on a reserved identifier or reserved macro name Required Decidable Yes

Misra2012:21.2 A reserved identifier or macro name shall not be declared Required Decidable Yes

Misra2012:21.3 The memory allocation and deallocation functions of shall not be used Required Decidable Yes

Misra2012:21.4 The standard header file shall not be used Required Decidable Yes

Misra2012:21.5 The standard header file shall not be used Required Decidable Yes

Misra2012:21.6 The Standard Library input/output functions shall not be used Required Decidable Yes

Misra2012:21.7 The atof, atoi, atol and atoll functions of shall not be used Required Decidable Yes

Misra2012:21.8 The Standard Library termination functions of shall not be used Required Decidable Yes

Misra2012:21.9 The library functions bsearch and qsort of shall not be used Required Decidable Yes

Misra2012:21.10 The Standard Library time and date functions shall not be used Required Decidable Yes

Misra2012:21.11 The standard header file should not be used Advisory Decidable Yes

Misra2012:21.12 The standard header file shall not be used Required Decidable Yes

Misra2012:21.13
Any value passed to a function in shall be representable as an unsigned char or be the

value EOF
Mandatory Undecidable Yes

Misra2012:21.14
The Standard Library function memcmp shall not be used to compare null terminated
strings

Required Undecidable Yes

Misra2012:21.15
The pointer arguments to the Standard Library functions memcpy, memmove and
memcmp shall be pointers to qualified or unqualified versions of compatible types

Required Decidable Yes

Misra2012:21.16
The pointer arguments to the Standard Library function memcmp shall point to either a
pointer type, an essentially signed type, an essentially unsigned type, an essentially
Boolean type or an essentially enum type

Required Decidable Yes

Misra2012:21.17
Use of the string handling functions from shall not result in accesses beyond the bounds
of the objects referenced by their pointer parameters

Mandatory Undecidable Yes

Misra2012:21.18 The size_t argument passed to any function in shall have an appropriate value Mandatory Undecidable Yes

Misra2012:21.19
The pointers returned by the Standard Library functions localeconv, getenv, setlocale or,
strerror shall only be used as if they have pointer to const-qualified type

Mandatory Undecidable Yes

Misra2012:21.20
The pointer returned by the Standard Library functions asctime, ctime, gmtime,
localtime, localeconv, setlocale or strerror shall not be used following a subsequent call
to the same function

Mandatory Undecidable Yes

Misra2012:21.21 The Standard Library function system of shall not be used Required Decidable Yes

Misra2012:21.22
All operand arguments to any type-generic macros declared in shall have an appropriate
essential type

Mandatory Decidable Yes

Misra2012:21.23
All operand arguments to any multi-argument type-generic macros declared in shall
have the same standard type

Required Decidable Yes

Misra2012:21.24 The random number generator functions of shall not be used Required Decidable Yes

Misra2012:21.25
All memory synchronization operations shall be executed in sequentially consistent
order

Advisory Decidable No

Misra2012:21.26
The Standard Library function mtx_timedlock() shall only be invoked on mutex objects
of appropriate mutex type

Required Undecidable No

Misra2012:22.1
All resources obtained dynamically by means of Standard Library functions shall be
explicitly released

Required Undecidable Yes

Misra2012:22.2
A block of memory shall only be freed if it was allocated by means of a Standard
Library function

Mandatory Undecidable Yes

Misra2012:22.3
The same file shall not be open for read and write access at the same time on different
streams

Required Undecidable Yes

Misra2012:22.4 There shall be no attempt to write to a stream which has been opened as read-only Mandatory Undecidable Yes

Misra2012:22.5 A pointer to a FILE object shall not be dereferenced Mandatory Undecidable Yes

Misra2012:22.6
The value of a pointer to a FILE shall not be used after the associated stream has been
closed

Mandatory Undecidable Yes

CODESONAR 8.0 | MISRA C:2012 GUIDELINES FOR THE USE OF THE C LANGUAGE IN CRITICAL SYSTEMS
(MARCH 2013)

8 TECHNICAL WHITEPAPER

Misra2012:22.7
The macro EOF shall only be compared with the unmodified return value from any
Standard Library function capable of returning EOF

Required Undecidable Yes

Misra2012:22.8 The value of errno shall be set to zero prior to a call to an errno-setting-function Required Undecidable Yes

Misra2012:22.9 The value of errno shall be tested against zero after calling an errno-setting-function Required Undecidable Yes

Misra2012:22.10
The value of errno shall only be tested when the last function to be called was an errno-
setting-function

Required Undecidable Yes

Misra2012:22.11
A thread that was previously either joined or detached shall not be subsequently joined

nor detached
Required Undecidable Yes

Misra2012:22.12
Thread objects, thread synchronization objects, and thread-specific storage pointers

shall only be accessed by the appropriate Standard Library functions
Mandatory Undecidable No

Misra2012:22.13
Thread objects, thread synchronization objects and thread-specific storage pointers shall
have appropriate storage duration

Required Decidable No

Misra2012:22.14 Thread synchronization objects shall be initialized before being accessed Mandatory Undecidable No

Misra2012:22.15
Thread synchronization objects and thread-specific storage pointers shall not be
destroyed until after all threads accessing them have terminated

Required Undecidable No

Misra2012:22.16 All mutex objects locked by a thread shall be explicitly unlocked by the same thread Required Undecidable Yes

Misra2012:22.17
No thread shall unlock a mutex or call cnd_wait() or cnd_timedwait() for a mutex it has
not locked before

Required Undecidable Yes

Misra2012:22.18 Non-recursive mutexes shall not be recursively locked Required Undecidable Yes

Misra2012:22.19 A condition variable shall be associated with at most one mutex object Required Undecidable No

Misra2012:22.20 Thread-specific storage pointers shall be created before being accessed Mandatory Undecidable No

Misra2012:23.1 A generic selection should only be expanded from a macro Advisory Decidable Yes

Misra2012:23.2
A generic selection that is not expanded from a macro shall not contain potential side
effects in the controlling expression

Required Decidable Yes

Misra2012:23.3 A generic selection should contain at least one non-default association Advisory Decidable Yes

Misra2012:23.4 A generic association shall list an appropriate type Required Decidable Yes

Misra2012:23.5 A generic selection should not depend on implicit pointer type conversion Advisory Decidable Yes

Misra2012:23.6
The controlling expression of a generic selection shall have an essential type that
matches its standard type

Required Decidable Yes

Misra2012:23.7
A generic selection that is expanded from a macro should evaluate its argument only
once

Advisory Decidable Yes

Misra2012:23.8
A default association shall appear as either the first or the last association of a generic
selection

Advisory Decidable Yes

Misra2012:D.1.1
Any implementation-defined behaviour on which the output of the program depends
shall be documented and understood

Required Undecidable No

Misra2012:D.2.1 All source files shall compile without any compilation errors Required Undecidable No

Misra2012:D.3.1 All code shall be traceable to documented requirements Required Undecidable No

Misra2012:D.4.1 Run-time failures shall be minimized Required Undecidable Yes

Misra2012:D.4.2 All usage of assembly language should be documented Advisory Undecidable No

Misra2012:D.4.3 Assembly language shall be encapsulated and isolated Required Undecidable Yes

Misra2012:D.4.4 Sections of code should not be "commented out" Advisory Undecidable Yes

Misra2012:D.4.5
Identifiers in the same name space with overlapping visibility should be typographically

unambiguous
Advisory Undecidable Yes

Misra2012:D.4.6
typedefs that indicate size and signedness should be used in place of the basic numerical
types

Advisory Undecidable Yes

Misra2012:D.4.7 If a function returns error information, then that error information shall be tested Required Undecidable Yes

Misra2012:D.4.8
If a pointer to a structure or union is never dereferenced within a translation unit, then
the implementation of the object should be hidden

Advisory Undecidable No

Misra2012:D.4.9
A function should be used in preference to a function-like macro where they are
interchangeable

Advisory Undecidable Yes

Misra2012:D.4.10
Precautions shall be taken in order to prevent the contents of a header file being
included more than once

Required Undecidable No

CODESONAR 8.0 | MISRA C:2012 GUIDELINES FOR THE USE OF THE C LANGUAGE IN CRITICAL SYSTEMS
(MARCH 2013)

9 TECHNICAL WHITEPAPER

Misra2012:D.4.11 The validity of values passed to library functions shall be checked Required Undecidable Yes

Misra2012:D.4.12 Dynamic memory allocation shall not be used Required Undecidable Yes

Misra2012:D.4.13
Functions which are designed to provide operations on a resource should be called in an
appropriate sequence

Advisory Undecidable Yes

Misra2012:D.4.14 The validity of values received from external sources shall be checked Required Undecidable Yes

Misra2012:D.4.15
Evaluation of floating-point expressions shall not lead to the undetected generation of
infinities and NaNs

Required Undecidable No

Misra2012:D.5.1 There shall be no data races between threads Required Undecidable Yes

Misra2012:D.5.2 There shall be no deadlocks between threads Required Undecidable Yes

Misra2012:D.5.3 There shall be no dynamic thread creation Required Undecidable No

CODESONAR 8.0 | MISRA C:2012 GUIDELINES FOR THE USE OF THE C LANGUAGE IN CRITICAL SYSTEMS
(MARCH 2013)

10 TECHNICAL WHITEPAPER

MISRA C:2012 BROAD MAPPING (CODESONAR V8.0)

The following table contains CodeSonar classes that are broadly mapped to specific MISRA C:2012 rules

and directives.

Rule Rule Name Category Decidability Supported

Misra2012:1.1
The program shall contain no violations of the standard C syntax and constraints, and
shall not exceed the implementation's translation limits

Required Decidable Yes

Misra2012:1.2 Language extensions should not be used Advisory Undecidable Yes

Misra2012:1.3 There shall be no occurrence of undefined or critical unspecified behaviour Required Undecidable Yes

Misra2012:1.4 Emergent language features shall not be used Required Decidable Yes

Misra2012:1.5 Obsolescent language features shall not be used Required Undecidable Yes

Misra2012:2.1 A project shall not contain unreachable code Required Undecidable Yes

Misra2012:2.2 A project shall not contain dead code Required Undecidable Yes

Misra2012:2.3 A project should not contain unused type declarations Advisory Decidable Yes

Misra2012:2.4 A project should not contain unused tag declarations Advisory Decidable Yes

Misra2012:2.5 A project should not contain unused macro declarations Advisory Decidable Yes

Misra2012:2.6 A function should not contain unused label declarations Advisory Decidable Yes

Misra2012:2.7 A function should not contain unused parameters Advisory Decidable Yes

Misra2012:2.8 A project should not contain unused object definitions Advisory Decidable Yes

Misra2012:3.1 The character sequences /* and // shall not be used within a comment Required Decidable Yes

Misra2012:3.2 Line-splicing shall not be used in // comments Required Decidable Yes

Misra2012:4.1 Octal and hexadecimal escape sequences shall be terminated Required Decidable Yes

Misra2012:4.2 Trigraphs should not be used Advisory Decidable Yes

Misra2012:5.1 External identifiers shall be distinct Required Decidable Yes

Misra2012:5.2 Identifiers declared in the same scope and name space shall be distinct Required Decidable Yes

Misra2012:5.3
An identifier declared in an inner scope shall not hide an identifier declared in an outer
scope

Required Decidable Yes

Misra2012:5.4 Macro identifiers shall be distinct Required Decidable Yes

Misra2012:5.5 Identifiers shall be distinct from macro names Required Decidable Yes

Misra2012:5.6 A typedef name shall be a unique identifier Required Decidable Yes

Misra2012:5.7 A tag name shall be a unique identifier Required Decidable Yes

Misra2012:5.8 Identifiers that define objects or functions with external linkage shall be unique Required Decidable Yes

Misra2012:5.9 Identifiers that define objects or functions with internal linkage should be unique Advisory Decidable Yes

Misra2012:6.1 Bit-fields shall only be declared with an appropriate type Required Decidable Yes

Misra2012:6.2 Single-bit named bit fields shall not be of a signed type Required Decidable Yes

Misra2012:6.3 A bit field shall not be declared as a member of a union Required Decidable Yes

Misra2012:7.1 Octal constants shall not be used Required Decidable Yes

Misra2012:7.2
A "u" or "U" suffix shall be applied to all integer constants that are represented in an
unsigned type

Required Decidable Yes

Misra2012:7.3 The lowercase character "l" shall not be used in a literal suffix Required Decidable Yes

Misra2012:7.4
A string literal shall not be assigned to an object unless the object's type is "pointer to
const-qualified char"

Required Decidable Yes

Misra2012:7.5 The argument of an integer constant macro shall have an appropriate form Mandatory Decidable Yes

Misra2012:7.6
The small integer variants of the minimum-width integer constant macros shall not be
used

Required Decidable Yes

Misra2012:8.1 Types shall be explicitly specified Required Decidable Yes

Misra2012:8.2 Function types shall be in prototype form with named parameters Required Decidable Yes

Misra2012:8.3 All declarations of an object or function shall use the same names and type qualifiers Required Decidable Yes

CODESONAR 8.0 | MISRA C:2012 GUIDELINES FOR THE USE OF THE C LANGUAGE IN CRITICAL SYSTEMS
(MARCH 2013)

11 TECHNICAL WHITEPAPER

Misra2012:8.4
A compatible declaration shall be visible when an object or function with external
linkage is defined

Required Decidable Yes

Misra2012:8.5 An external object or function shall be declared once in one and only one file Required Decidable Yes

Misra2012:8.6 An identifier with external linkage shall have exactly one external definition Required Decidable Yes

Misra2012:8.7
Functions and objects should not be defined with external linkage if they are referenced
in only one translation unit

Advisory Decidable Yes

Misra2012:8.8
The static storage class specifier shall be used in all declarations of objects and

functions that have internal linkage
Required Decidable Yes

Misra2012:8.9
An object should be declared at block scope if its identifier only appears in a single

function
Advisory Decidable Yes

Misra2012:8.10 An inline function shall be declared with the static storage class Required Decidable Yes

Misra2012:8.11 When an array with external linkage is declared, its size should be explicitly specified Advisory Decidable Yes

Misra2012:8.12
Within an enumerator list, the value of an implicitly-specified enumeration constant
shall be unique

Required Decidable Yes

Misra2012:8.13 A pointer should point to a const-qualified type whenever possible Advisory Undecidable Yes

Misra2012:8.14 The restrict type qualifier shall not be used Required Decidable Yes

Misra2012:8.15
All declarations of an object with an explicit alignment specification shall specify the
same alignment

Required Decidable No

Misra2012:8.16 The alignment specification of zero should not appear in an object declaration Advisory Decidable No

Misra2012:8.17 At most one explicit alignment specifier should appear in an object declaration Advisory Decidable No

Misra2012:9.1
The value of an object with automatic storage duration shall not be read before it has
been set

Mandatory Undecidable Yes

Misra2012:9.2 The initializer for an aggregate or union shall be enclosed in braces Required Decidable Yes

Misra2012:9.3 Arrays shall not be partially initialized Required Decidable Yes

Misra2012:9.4 An element of an object shall not be initialized more than once Required Decidable Yes

Misra2012:9.5
Where designated initializers are used to initialize an array object the size of the array
shall be specified explicitly

Required Decidable Yes

Misra2012:9.6 An initializer using chained designators shall not contain initializers without designators Required Decidable No

Misra2012:9.7 Atomic objects shall be appropriately initialized before being accessed Mandatory Undecidable Yes

Misra2012:10.1 Operands shall not be of an inappropriate essential type Required Decidable Yes

Misra2012:10.2
Expressions of essentially character type shall not be used inappropriately in addition

and subtraction operations
Required Decidable Yes

Misra2012:10.3
The value of an expression shall not be assigned to an object with a narrower essential
type or of a different essential type category

Required Decidable Yes

Misra2012:10.4
Both operands of an operator in which the usual arithmetic conversions are performed
shall have the same essential type category

Required Decidable Yes

Misra2012:10.5 The value of an expression should not be cast to an inappropriate essential type Advisory Decidable Yes

Misra2012:10.6
The value of a composite expression shall not be assigned to an object with wider
essential type

Required Decidable Yes

Misra2012:10.7
If a composite expression is used as one operand of an operator in which the usual
arithmetic conversions are performed then the other operand shall not have wider
essential type

Required Decidable Yes

Misra2012:10.8
The value of a composite expression shall not be cast to a different essential type
category or a wider essential type

Required Decidable Yes

Misra2012:11.1 Conversions shall not be performed between a pointer to a function and any other type Required Decidable Yes

Misra2012:11.2
Conversions shall not be performed between a pointer to an incomplete type and any
other type

Required Decidable Yes

Misra2012:11.3
A conversion shall not be performed between a pointer to object type and a pointer to a

different object type
Required Decidable Yes

Misra2012:11.4 A conversion should not be performed between a pointer to object and an integer type Advisory Decidable Yes

Misra2012:11.5 A conversion should not be performed from pointer to void into pointer to object Advisory Decidable Yes

Misra2012:11.6 A cast shall not be performed between pointer to void and an arithmetic type Required Decidable Yes

CODESONAR 8.0 | MISRA C:2012 GUIDELINES FOR THE USE OF THE C LANGUAGE IN CRITICAL SYSTEMS
(MARCH 2013)

12 TECHNICAL WHITEPAPER

Misra2012:11.7
A cast shall not be performed between pointer to object and a non-integer arithmetic
type

Required Decidable Yes

Misra2012:11.8
A conversion shall not remove any const, volatile or _Atomic qualification from the
type pointed to by a pointer

Required Decidable Yes

Misra2012:11.9 The macro NULL shall be the only permitted form of integer null pointer constant Required Decidable Yes

Misra2012:11.10 The _Atomic qualifier shall not be applied to the incomplete type void Required Decidable Yes

Misra2012:12.1 The precedence of operators within expressions should be made explicit Advisory Decidable Yes

Misra2012:12.2
The right hand operand of a shift operator shall lie in the range zero to one less than the
width in bits of the essential type of the left hand operand

Required Undecidable Yes

Misra2012:12.3 The comma operator should not be used Advisory Decidable Yes

Misra2012:12.4 Evaluation of constant expressions should not lead to unsigned integer wrap-around Advisory Decidable Yes

Misra2012:12.5
The sizeof operator shall not have an operand which is a function parameter declared as
"array of type"

Mandatory Decidable Yes

Misra2012:12.6 Structure and union members of atomic objects shall not be directly accessed Required Decidable Yes

Misra2012:13.1 Initializer lists shall not contain persistent side effects Required Undecidable Yes

Misra2012:13.2
The value of an expression and its persistent side effects shall be the same under all
permitted evaluation orders and shall be independent from thread interleaving

Required Undecidable Yes

Misra2012:13.3
A full expression containing an increment (++) or decrement (--) operator should have
no other potential side effects other than that caused by the increment or decrement
operator

Advisory Decidable Yes

Misra2012:13.4 The result of an assignment operator should not be used Advisory Decidable Yes

Misra2012:13.5
The right hand operand of a logical && or || operator shall not contain persistent side
effects

Required Undecidable Yes

Misra2012:13.6
The operand of the sizeof operator shall not contain any expression which has potential
side effects

Mandatory Decidable Yes

Misra2012:14.1 A loop counter shall not have essentially floating type Required Undecidable Yes

Misra2012:14.2 A for loop shall be well-formed Required Undecidable Yes

Misra2012:14.3 Controlling expressions shall not be invariant Required Undecidable Yes

Misra2012:14.4
The controlling expression of an if statement and the controlling expression of an
iteration-statement shall have essentially Boolean type

Required Decidable Yes

Misra2012:15.1 The goto statement should not be used Advisory Decidable Yes

Misra2012:15.2 The goto statement shall jump to a label declared later in the same function Required Decidable Yes

Misra2012:15.3
Any label referenced by a goto statement shall be declared in the same block, or in any
block enclosing the goto statement

Required Decidable Yes

Misra2012:15.4
There should be no more than one break or goto statement used to terminate any
iteration statement

Advisory Decidable Yes

Misra2012:15.5 A function should have a single point of exit at the end Advisory Decidable Yes

Misra2012:15.6
The body of an iteration-statement or a selection-statement shall be a compound-
statement

Required Decidable Yes

Misra2012:15.7 All if ... else if constructs shall be terminated with an else statement Required Decidable Yes

Misra2012:16.1 All switch statements shall be well-formed Required Decidable Yes

Misra2012:16.2
A switch label shall only be used when the most closely-enclosing compound statement
is the body of a switch statement

Required Decidable Yes

Misra2012:16.3 An unconditional break statement shall terminate every switch-clause Required Decidable Yes

Misra2012:16.4 Every switch statement shall have a default label Required Decidable Yes

Misra2012:16.5
A default label shall appear as either the first or the last switch label of a switch
statement

Required Decidable Yes

Misra2012:16.6 Every switch statement shall have at least two switch-clauses Required Decidable Yes

Misra2012:16.7 A switch-expression shall not have essentially Boolean type Required Decidable Yes

Misra2012:17.1 The standard header file shall not be used Required Decidable Yes

Misra2012:17.2 Functions shall not call themselves, either directly or indirectly Required Undecidable Yes

CODESONAR 8.0 | MISRA C:2012 GUIDELINES FOR THE USE OF THE C LANGUAGE IN CRITICAL SYSTEMS
(MARCH 2013)

13 TECHNICAL WHITEPAPER

Misra2012:17.3 A function shall not be declared implicitly Mandatory Decidable Yes

Misra2012:17.4
All exit paths from a function with non-void return type shall have an explicit return
statement with an expression

Mandatory Decidable Yes

Misra2012:17.5
The function argument corresponding to a parameter declared to have an array type
shall have an appropriate number of elements

Advisory Undecidable Yes

Misra2012:17.6
The declaration of an array parameter shall not contain the static keyword between the [
]

Mandatory Decidable Yes

Misra2012:17.7 The value returned by a function having non-void return type shall be used Required Decidable Yes

Misra2012:17.8 A function parameter should not be modified Advisory Undecidable Yes

Misra2012:17.9 A function declared with a _Noreturn function specifier shall not return to its caller Mandatory Undecidable No

Misra2012:17.10 A function declared with a _Noreturn function specifier shall have void return type Required Decidable No

Misra2012:17.11 A function that never returns should be declared with a _Noreturn function specifier Advisory Undecidable No

Misra2012:17.12
A function identifier should only be used with either a preceding &, or with a
parenthesized parameter list

Advisory Decidable Yes

Misra2012:17.13 A function type shall not be type qualified Required Decidable No

Misra2012:18.1
A pointer resulting from arithmetic on a pointer operand shall address an element of the
same array as that pointer operand

Required Undecidable Yes

Misra2012:18.2
Subtraction between pointers shall only be applied to pointers that address elements of
the same array

Required Undecidable Yes

Misra2012:18.3
The relational operators >, >=, < and <= shall not be applied to expressions of pointer
type except where they point into the same object

Required Undecidable Yes

Misra2012:18.4 The +, -, += and -= operators should not be applied to an expression of pointer type Advisory Decidable Yes

Misra2012:18.5 Declarations should contain no more than two levels of pointer nesting Advisory Decidable Yes

Misra2012:18.6
The address of an object with automatic or thread-local storage shall not be copied to
another object that persists after the first object has ceased to exist

Required Undecidable Yes

Misra2012:18.7 Flexible array members shall not be declared Required Decidable Yes

Misra2012:18.8 Variable-length array types shall not be used Required Decidable Yes

Misra2012:18.9 An object with temporary lifetime shall not undergo array-to-pointer conversion Required Decidable No

Misra2012:18.10 Pointers to variably-modified array types shall not be used Mandatory Decidable Yes

Misra2012:19.1 An object shall not be assigned or copied to an overlapping object Mandatory Undecidable Yes

Misra2012:19.2 The union keyword should not be used Advisory Decidable Yes

Misra2012:20.1 #include directives should only be preceded by preprocessor directives or comments Advisory Decidable Yes

Misra2012:20.2
The ', " or \ characters and the /* or // character sequences shall not occur in a header file
name

Required Decidable Yes

Misra2012:20.3 The #include directive shall be followed by either a or "filename" sequence Required Decidable Yes

Misra2012:20.4 A macro shall not be defined with the same name as a keyword Required Decidable Yes

Misra2012:20.5 #undef should not be used Advisory Decidable Yes

Misra2012:20.6 Tokens that look like a preprocessing directive shall not occur within a macro argument Required Decidable Yes

Misra2012:20.7
Expressions resulting from the expansion of macro parameters shall be enclosed in
parentheses

Required Decidable Yes

Misra2012:20.8
The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0 or
1

Required Decidable Yes

Misra2012:20.9
All identifiers used in the controlling expression of #if or #elif preprocessing directives
shall be #define'd before evaluation

Required Decidable Yes

Misra2012:20.10 The # and ## preprocessor operators should not be used Advisory Decidable Yes

Misra2012:20.11
A macro parameter immediately following a # operator shall not immediately be
followed by a ## operator

Required Decidable Yes

Misra2012:20.12
A macro parameter used as an operand to the # or ## operators, which is itself subject to

further macro replacement, shall only be used as an operand to these operators
Required Decidable Yes

Misra2012:20.13 A line whose first token is # shall be a valid preprocessing directive Required Decidable Yes

CODESONAR 8.0 | MISRA C:2012 GUIDELINES FOR THE USE OF THE C LANGUAGE IN CRITICAL SYSTEMS
(MARCH 2013)

14 TECHNICAL WHITEPAPER

Misra2012:20.14
All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if,
#ifdef or #ifndef directive to which they are related

Required Decidable Yes

Misra2012:21.1 #define and #undef shall not be used on a reserved identifier or reserved macro name Required Decidable Yes

Misra2012:21.2 A reserved identifier or macro name shall not be declared Required Decidable Yes

Misra2012:21.3 The memory allocation and deallocation functions of shall not be used Required Decidable Yes

Misra2012:21.4 The standard header file shall not be used Required Decidable Yes

Misra2012:21.5 The standard header file shall not be used Required Decidable Yes

Misra2012:21.6 The Standard Library input/output functions shall not be used Required Decidable Yes

Misra2012:21.7 The atof, atoi, atol and atoll functions of shall not be used Required Decidable Yes

Misra2012:21.8 The Standard Library termination functions of shall not be used Required Decidable Yes

Misra2012:21.9 The library functions bsearch and qsort of shall not be used Required Decidable Yes

Misra2012:21.10 The Standard Library time and date functions shall not be used Required Decidable Yes

Misra2012:21.11 The standard header file should not be used Advisory Decidable Yes

Misra2012:21.12 The standard header file shall not be used Required Decidable Yes

Misra2012:21.13
Any value passed to a function in shall be representable as an unsigned char or be the

value EOF
Mandatory Undecidable Yes

Misra2012:21.14
The Standard Library function memcmp shall not be used to compare null terminated
strings

Required Undecidable Yes

Misra2012:21.15
The pointer arguments to the Standard Library functions memcpy, memmove and
memcmp shall be pointers to qualified or unqualified versions of compatible types

Required Decidable Yes

Misra2012:21.16
The pointer arguments to the Standard Library function memcmp shall point to either a
pointer type, an essentially signed type, an essentially unsigned type, an essentially
Boolean type or an essentially enum type

Required Decidable Yes

Misra2012:21.17
Use of the string handling functions from shall not result in accesses beyond the bounds
of the objects referenced by their pointer parameters

Mandatory Undecidable Yes

Misra2012:21.18 The size_t argument passed to any function in shall have an appropriate value Mandatory Undecidable Yes

Misra2012:21.19
The pointers returned by the Standard Library functions localeconv, getenv, setlocale or,
strerror shall only be used as if they have pointer to const-qualified type

Mandatory Undecidable Yes

Misra2012:21.20
The pointer returned by the Standard Library functions asctime, ctime, gmtime,
localtime, localeconv, setlocale or strerror shall not be used following a subsequent call
to the same function

Mandatory Undecidable Yes

Misra2012:21.21 The Standard Library function system of shall not be used Required Decidable Yes

Misra2012:21.22
All operand arguments to any type-generic macros declared in shall have an appropriate
essential type

Mandatory Decidable Yes

Misra2012:21.23
All operand arguments to any multi-argument type-generic macros declared in shall
have the same standard type

Required Decidable Yes

Misra2012:21.24 The random number generator functions of shall not be used Required Decidable Yes

Misra2012:21.25
All memory synchronization operations shall be executed in sequentially consistent
order

Advisory Decidable No

Misra2012:21.26
The Standard Library function mtx_timedlock() shall only be invoked on mutex objects
of appropriate mutex type

Required Undecidable No

Misra2012:22.1
All resources obtained dynamically by means of Standard Library functions shall be
explicitly released

Required Undecidable Yes

Misra2012:22.2
A block of memory shall only be freed if it was allocated by means of a Standard
Library function

Mandatory Undecidable Yes

Misra2012:22.3
The same file shall not be open for read and write access at the same time on different
streams

Required Undecidable Yes

Misra2012:22.4 There shall be no attempt to write to a stream which has been opened as read-only Mandatory Undecidable Yes

Misra2012:22.5 A pointer to a FILE object shall not be dereferenced Mandatory Undecidable Yes

Misra2012:22.6
The value of a pointer to a FILE shall not be used after the associated stream has been
closed

Mandatory Undecidable Yes

CODESONAR 8.0 | MISRA C:2012 GUIDELINES FOR THE USE OF THE C LANGUAGE IN CRITICAL SYSTEMS
(MARCH 2013)

15 TECHNICAL WHITEPAPER

Misra2012:22.7
The macro EOF shall only be compared with the unmodified return value from any
Standard Library function capable of returning EOF

Required Undecidable Yes

Misra2012:22.8 The value of errno shall be set to zero prior to a call to an errno-setting-function Required Undecidable Yes

Misra2012:22.9 The value of errno shall be tested against zero after calling an errno-setting-function Required Undecidable Yes

Misra2012:22.10
The value of errno shall only be tested when the last function to be called was an errno-
setting-function

Required Undecidable Yes

Misra2012:22.11
A thread that was previously either joined or detached shall not be subsequently joined

nor detached
Required Undecidable Yes

Misra2012:22.12
Thread objects, thread synchronization objects, and thread-specific storage pointers

shall only be accessed by the appropriate Standard Library functions
Mandatory Undecidable No

Misra2012:22.13
Thread objects, thread synchronization objects and thread-specific storage pointers shall
have appropriate storage duration

Required Decidable No

Misra2012:22.14 Thread synchronization objects shall be initialized before being accessed Mandatory Undecidable No

Misra2012:22.15
Thread synchronization objects and thread-specific storage pointers shall not be
destroyed until after all threads accessing them have terminated

Required Undecidable No

Misra2012:22.16 All mutex objects locked by a thread shall be explicitly unlocked by the same thread Required Undecidable Yes

Misra2012:22.17
No thread shall unlock a mutex or call cnd_wait() or cnd_timedwait() for a mutex it has
not locked before

Required Undecidable Yes

Misra2012:22.18 Non-recursive mutexes shall not be recursively locked Required Undecidable Yes

Misra2012:22.19 A condition variable shall be associated with at most one mutex object Required Undecidable No

Misra2012:22.20 Thread-specific storage pointers shall be created before being accessed Mandatory Undecidable No

Misra2012:23.1 A generic selection should only be expanded from a macro Advisory Decidable Yes

Misra2012:23.2
A generic selection that is not expanded from a macro shall not contain potential side
effects in the controlling expression

Required Decidable Yes

Misra2012:23.3 A generic selection should contain at least one non-default association Advisory Decidable Yes

Misra2012:23.4 A generic association shall list an appropriate type Required Decidable Yes

Misra2012:23.5 A generic selection should not depend on implicit pointer type conversion Advisory Decidable Yes

Misra2012:23.6
The controlling expression of a generic selection shall have an essential type that
matches its standard type

Required Decidable Yes

Misra2012:23.7
A generic selection that is expanded from a macro should evaluate its argument only
once

Advisory Decidable Yes

Misra2012:23.8
A default association shall appear as either the first or the last association of a generic
selection

Advisory Decidable Yes

Misra2012:D.1.1
Any implementation-defined behaviour on which the output of the program depends
shall be documented and understood

Required Undecidable No

Misra2012:D.2.1 All source files shall compile without any compilation errors Required Undecidable No

Misra2012:D.3.1 All code shall be traceable to documented requirements Required Undecidable No

Misra2012:D.4.1 Run-time failures shall be minimized Required Undecidable Yes

Misra2012:D.4.2 All usage of assembly language should be documented Advisory Undecidable No

Misra2012:D.4.3 Assembly language shall be encapsulated and isolated Required Undecidable Yes

Misra2012:D.4.4 Sections of code should not be "commented out" Advisory Undecidable Yes

Misra2012:D.4.5
Identifiers in the same name space with overlapping visibility should be typographically

unambiguous
Advisory Undecidable Yes

Misra2012:D.4.6
typedefs that indicate size and signedness should be used in place of the basic numerical
types

Advisory Undecidable Yes

Misra2012:D.4.7 If a function returns error information, then that error information shall be tested Required Undecidable Yes

Misra2012:D.4.8
If a pointer to a structure or union is never dereferenced within a translation unit, then
the implementation of the object should be hidden

Advisory Undecidable No

Misra2012:D.4.9
A function should be used in preference to a function-like macro where they are
interchangeable

Advisory Undecidable Yes

Misra2012:D.4.10
Precautions shall be taken in order to prevent the contents of a header file being
included more than once

Required Undecidable No

CODESONAR 8.0 | MISRA C:2012 GUIDELINES FOR THE USE OF THE C LANGUAGE IN CRITICAL SYSTEMS
(MARCH 2013)

16 TECHNICAL WHITEPAPER

Misra2012:D.4.11 The validity of values passed to library functions shall be checked Required Undecidable Yes

Misra2012:D.4.12 Dynamic memory allocation shall not be used Required Undecidable Yes

Misra2012:D.4.13
Functions which are designed to provide operations on a resource should be called in an
appropriate sequence

Advisory Undecidable Yes

Misra2012:D.4.14 The validity of values received from external sources shall be checked Required Undecidable Yes

Misra2012:D.4.15
Evaluation of floating-point expressions shall not lead to the undetected generation of
infinities and NaNs

Required Undecidable No

Misra2012:D.5.1 There shall be no data races between threads Required Undecidable Yes

Misra2012:D.5.2 There shall be no deadlocks between threads Required Undecidable Yes

Misra2012:D.5.3 There shall be no dynamic thread creation Required Undecidable No

CodeSecure is a leading global provider of application testing (AST) solutions used by the

world’s most security conscious organizations to detect, measure, analyze and resolve

vulnerabilities for software they develop or use. The company is also a trusted cybersecurity

and artificial intelligence research partner for the nation’s civil, defense, and intelligence

agencies.

CodeSonar and CodeSentry are registered trademarks of CodeSecure, Inc.

© CodeSecure, Inc. All rights reserved.

