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INTRODUCTION 
 

The MISRA C:2004 standard aims to foster safety, reliability, and portability of programs 

written in   ISO C for embedded systems. It is used in a wide range of industries, including 

automotive, aero- space, medical devices, and industrial control. 
 

CodeSonar 8.0 includes a large number of warning classes that support checking for the 

MISRA C:2004 guidelines. Every CodeSonar warning report includes the numbers of any 

MISRA C:2004  rules that are closely mapped to the warning’s class. (The close mapping for a 

warning class is the set of categories—including MISRA C:2004 rule and directive numbers—

that most  closely match the class, if any). 
 

You can configure CodeSonar to enable and disable warning classes mapped to specific 

MISRA C:2004 rules, or use build presets to enable all warning classes that are closely 

mapped to any MISRA C:2004 rules and directives. In addition, you can use the CodeSonar 

search function to find warnings related to specific MISRA C:2004 rules, or to any MISRA 

C:2004 rule. 
 

For more information on MISRA C: 

https://www.misra.org.uk/MISRAChome/tabid/181/Default.aspx 

  

https://www.misra.org.uk/MISRAChome/tabid/181/Default.aspx
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MISRA C:2004 CLOSE MAPPING (CODESONAR V8.0) 
 

The following table contains CodeSonar classes that are closely mapped to specific MISRA  C:2004 

rules and directives. 

Rule Rule Name Category Supported 

Misra2004:1.1 
All code shall conform to ISO/IEC 9899:1990 "Programming languages C", amended and corrected 
by ISO/IEC 9899/COR1:1995, ISO/IEC 9899/AMD1:1995, and ISO/IEC 9899/COR2:1996 

Required Yes 

Misra2004:1.2 No reliance shall be placed on undefined or unspecified behaviour Required No 

Misra2004:1.3 
Multiple compilers and/or languages shall only be used if there is a common defined interface 
standard for object code to which the languages/compilers/assemblers conform 

Required No 

Misra2004:1.4 
The compiler/linker shall be checked to ensure that 31 character significance and case sensitivity are 
supported for external identifiers 

Required No 

Misra2004:1.5 Floating-point implementations should comply with a defined floating-point standard Advisory No 

Misra2004:2.1 Assembly language shall be encapsulated and isolated Required Yes 

Misra2004:2.2 Source code shall only use /* ... */ style comments Required Yes 

Misra2004:2.3 The character sequence /* shall not be used within a comment Required Yes 

Misra2004:2.4 Sections of code should not be "commented out" Advisory Yes 

Misra2004:3.1 All usage of implementation-defined behaviour shall be documented Required No 

Misra2004:3.2 The character set and the corresponding encoding shall be documented Required No 

Misra2004:3.3 
The implementation of integer division in the chosen compiler should be determined, documented 
and taken into account 

Advisory No 

Misra2004:3.4 All uses of the #pragma directive shall be documented and explained Required No 

Misra2004:3.5 
The implementation defined behaviour and packing of bitfields shall be documented if being relied 
upon 

Required Yes 

Misra2004:3.6 
All libraries used in production code shall be written to comply with the provisions of this document, 
and shall have been subject to appropriate validation 

Required No 

Misra2004:4.1 Only those escape sequences that are defined in the ISO C standard shall be used Required No 

Misra2004:4.2 Trigraphs shall not be used Required Yes 

Misra2004:5.1 Identifiers (internal and external) shall not rely on the significance of more than 31 characters Required Yes 

Misra2004:5.2 
Identifiers in an inner scope shall not use the same name as an identifier in an outer scope, and 
therefore hide that identifier 

Required Yes 

Misra2004:5.3 A typedef name shall be a unique identifier Required Yes 

Misra2004:5.4 A tag name shall be a unique identifier Required Yes 

Misra2004:5.5 No object or function identifier with static storage duration should be reused Advisory Yes 

Misra2004:5.6 
No identifier in one name space should have the same spelling as an identifier in another name space, 

with the exception of structure member and union member names 
Advisory No 

Misra2004:5.7 No identifier name should be reused Advisory Yes 

Misra2004:6.1 The plain char type shall be used only for storage and use of character values Required Yes 

Misra2004:6.2 signed and unsigned char type shall be used only for the storage and use of numeric values Required Yes 

Misra2004:6.3 typedefs that indicate size and signedness should be used in place of the basic numerical types Advisory Yes 

Misra2004:6.4 Bit fields shall only be defined to be of type unsigned int or signed int Required Yes 

Misra2004:6.5 Bit fields of signed type shall be at least 2 bits long Required Yes 

Misra2004:7.1 Octal constants (other than zero) and octal escape sequences shall not be used Required Yes 

Misra2004:8.1 
Functions shall have prototype declarations and the prototype shall be visible at both the function 
definition and call 

Required Yes 

Misra2004:8.2 Whenever an object or function is declared or defined, its type shall be explicitly stated Required Yes 

Misra2004:8.3 
For each function parameter the type given in the declaration and definition shall be identical, and the 
return types shall also be identical 

Required Yes 

Misra2004:8.4 If objects or functions are declared more than once their types shall be compatible Required Yes 

Misra2004:8.5 There shall be no definitions of objects or functions in a header file Required Yes 
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Misra2004:8.6 Functions shall be declared at file scope Required Yes 

Misra2004:8.7 Objects shall be defined at block scope if they are only accessed from within a single function Required Yes 

Misra2004:8.8 An external object or function shall be declared in one and only one file Required Yes 

Misra2004:8.9 An identifier with external linkage shall have exactly one external definition Required Yes 

Misra2004:8.10 
All declarations and definitions of objects or functions at file scope shall have internal linkage unless 
external linkage is required 

Required Yes 

Misra2004:8.11 
The static storage class specifier shall be used in definitions and declarations of objects and functions 
that have internal linkage 

Required Yes 

Misra2004:8.12 
When an array is declared with external linkage, its size shall be stated explicitly or defined implicitly 
by initialisation 

Required Yes 

Misra2004:9.1 All automatic variables shall have been assigned a value before being used Required Yes 

Misra2004:9.2 
Braces shall be used to indicate and match the structure in the non-zero initialisation of arrays and 
structures 

Required Yes 

Misra2004:9.3 
In an enumerator list, the "=" construct shall not be used to explicitly initialise members other than 
the first, unless all items are explicitly initialised 

Required Yes 

Misra2004:10.1 

The value of an expression of integer type shall not be implicitly converted to a different underlying 
type if: (a) it is not a conversion to a wider integer type of the same signedness, or (b) the expression 
is complex, or (c) the expression is not constant and is a function argument, or (d) the expression is 
not constant and is a return expression 

Required Yes 

Misra2004:10.2 
The value of an expression of floating type shall not be implicitly converted to a different type if: (a) 
it is not a conversion to a wider floating type, or (b) the expression is complex, or (c) the expression 
is a function argument, or (d) the expression is a return expression 

Required Yes 

Misra2004:10.3 
The value of a complex expression of integer type shall only be cast to a type of the same signedness 
that is no wider than the underlying type of the expression 

Required Yes 

Misra2004:10.4 
The value of a complex expression of floating type shall only be cast to a floating type that is 
narrower or of the same size 

Required Yes 

Misra2004:10.5 
If the bitwise operators ~ and << are applied to an operand of underlying type unsigned char or 
unsigned short, the result shall be immediately cast to the underlying type of the operand 

Required Yes 

Misra2004:10.6 A "U" suffix shall be applied to all constants of unsigned type Required Yes 

Misra2004:11.1 
Conversions shall not be performed between a pointer to a function and any type other than an 
integral type 

Required Yes 

Misra2004:11.2 
Conversions shall not be performed between a pointer to object and any type other than an integral 
type, another pointer to object type or a pointer to void 

Required Yes 

Misra2004:11.3 A cast should not be performed between a pointer type and an integral type Advisory Yes 

Misra2004:11.4 A cast should not be performed between a pointer to object type and a different pointer to object type Advisory Yes 

Misra2004:11.5 
A cast shall not be performed that removes any const or volatile qualification from the type addressed 
by a pointer 

Required Yes 

Misra2004:12.1 Limited dependence should be placed on C's operator precedence rules in expressions Advisory Yes 

Misra2004:12.2 The value of an expression shall be the same under any order of evaluation that the standard permits Required No 

Misra2004:12.3 The sizeof operator shall not be used on expressions that contain side effects Required Yes 

Misra2004:12.4 The right-hand operand of a logical && or || operator shall not contain side effects Required No 

Misra2004:12.5 The operands of a logical && or || shall be primary-expressions Required No 

Misra2004:12.6 
The operands of logical operators (&&, || and !) should be effectively Boolean. Expressions that are 
effectively Boolean should not be used as operands to operators other than (&&, || , !, =, ==, != and 
?:) 

Advisory Yes 

Misra2004:12.7 Bitwise operators shall not be applied to operands whose underlying type is signed Required Yes 

Misra2004:12.8 
The right-hand operand of a shift operator shall lie between zero and one less than the width in bits of 
the underlying type of the left-hand operand 

Required Yes 

Misra2004:12.9 The unary minus operator shall not be applied to an expression whose underlying type is unsigned Required Yes 

Misra2004:12.10 The comma operator shall not be used Required Yes 

Misra2004:12.11 Evaluation of constant unsigned integer expressions should not lead to wraparound Advisory Yes 

Misra2004:12.12 The underlying bit representations of floating-point values shall not be used Required No 
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Misra2004:12.13 
The increment (++) and decrement (--) operators should not be mixed with other operators in an 
expression 

Advisory Yes 

Misra2004:13.1 Assignment operators shall not be used in expressions that yield a Boolean value Required No 

Misra2004:13.2 Tests of a value against zero should be made explicit, unless the operand is effectively Boolean Advisory Yes 

Misra2004:13.3 Floating-point expressions shall not be tested for equality or inequality Required Yes 

Misra2004:13.4 The controlling expression of a for statement shall not contain any objects of floating type Required Yes 

Misra2004:13.5 The three expressions of a for statement shall be concerned only with loop control Required Yes 

Misra2004:13.6 
Numeric variables being used within a for loop for iteration counting shall not be modified in the 
body of the loop 

Required Yes 

Misra2004:13.7 Boolean operations whose results are invariant shall not be permitted Required Yes 

Misra2004:14.1 There shall be no unreachable code Required Yes 

Misra2004:14.2 
All non-null statements shall either (a) have at least one side-effect however executed, or (b) cause 

control flow to change 
Required Yes 

Misra2004:14.3 
Before preprocessing, a null statement shall only occur on a line by itself; it may be followed by a 
comment provided that the first character following the null statement is a white-space character 

Required Yes 

Misra2004:14.4 The goto statement shall not be used Required Yes 

Misra2004:14.5 The continue statement shall not be used Required Yes 

Misra2004:14.6 For any iteration statement there shall be at most one break statement used for loop termination Required Yes 

Misra2004:14.7 A function shall have a single point of exit at the end of the function Required Yes 

Misra2004:14.8 
The statement forming the body of a switch, while, do ... while or for statement shall be a compound 

statement 
Required Yes 

Misra2004:14.9 
An if (expression) construct shall be followed by a compound statement. The else keyword shall be 
followed by either a compound statement, or another if statement 

Required Yes 

Misra2004:14.10 All if . else if constructs shall be terminated with an else clause Required Yes 

Misra2004:15.0 The MISRA C switch syntax shall be used Required Yes 

Misra2004:15.1 
A switch label shall only be used when the most closely-enclosing compound statement is the body of 
a switch statement 

Required Yes 

Misra2004:15.2 An unconditional break statement shall terminate every non-empty switch clause Required Yes 

Misra2004:15.3 The final clause of a switch statement shall be the default clause Required Yes 

Misra2004:15.4 A switch expression shall not represent a value that is effectively Boolean Required Yes 

Misra2004:15.5 Every switch statement shall have at least one case clause Required Yes 

Misra2004:16.1 Functions shall not be defined with variable numbers of arguments Required No 

Misra2004:16.2 Functions shall not call themselves, either directly or indirectly Required Yes 

Misra2004:16.3 Identifiers shall be given for all of the parameters in a function prototype declaration Required Yes 

Misra2004:16.4 The identifiers used in the declaration and definition of a function shall be identical Required Yes 

Misra2004:16.5 Functions with no parameters shall be declared and defined with the parameter list void Required Yes 

Misra2004:16.6 The number of arguments passed to a function shall match the number of parameters Required Yes 

Misra2004:16.7 
A pointer parameter in a function prototype should be declared as pointer to const if the pointer is not 
used to modify the addressed object 

Advisory Yes 

Misra2004:16.8 
All exit paths from a function with non-void return type shall have an explicit return statement with 

an expression 
Required Yes 

Misra2004:16.9 
A function identifier shall only be used with either a preceding &, or with a parenthesised parameter 

list, which may be empty 
Required Yes 

Misra2004:16.10 If a function returns error information, then that error information shall be tested Required Yes 

Misra2004:17.1 Pointer arithmetic shall only be applied to pointers that address an array or array element Required Yes 

Misra2004:17.2 Pointer subtraction shall only be applied to pointers that address elements of the same array Required Yes 

Misra2004:17.3 >, >=, <, <= shall not be applied to pointer types except where they point to the same array Required Yes 

Misra2004:17.4 Array indexing shall be the only allowed form of pointer arithmetic Required Yes 

Misra2004:17.5 The declaration of objects should contain no more than 2 levels of pointer indirection Advisory No 
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Misra2004:17.6 
The address of an object with automatic storage shall not be assigned to another object that may 
persist after the first object has ceased to exist 

Required Yes 

Misra2004:18.1 All structure or union types shall be complete at the end of a translation unit Required No 

Misra2004:18.2 An object shall not be assigned to an overlapping object Required Yes 

Misra2004:18.3 An area of memory shall not be reused for unrelated purposes Required No 

Misra2004:18.4 Unions shall not be used Required Yes 

Misra2004:19.1 #include statements in a file should only be preceded by other preprocessor directives or comments Advisory Yes 

Misra2004:19.2 Non-standard characters should not occur in header file names in #include directives Advisory Yes 

Misra2004:19.3 The #include directive shall be followed by either a or "filename" sequence Required Yes 

Misra2004:19.4 
C macros shall only expand to a braced initialiser, a constant, a string literal, a parenthesised 
expression, a type qualifier, a storage class specifier, or a do-whilezero construct 

Required Yes 

Misra2004:19.5 Macros shall not be #define'd or #undef'd within a block Required Yes 

Misra2004:19.6 #undef shall not be used Required Yes 

Misra2004:19.7 A function should be used in preference to a function-like macro Advisory Yes 

Misra2004:19.8 A function-like macro shall not be invoked without all of its arguments Required No 

Misra2004:19.9 Arguments to a function-like macro shall not contain tokens that look like preprocessing directives Required Yes 

Misra2004:19.10 
In the definition of a function-like macro each instance of a parameter shall be enclosed in 
parentheses unless it is used as the operand of # or ## 

Required No 

Misra2004:19.11 
All macro identifiers in preprocessor directives shall be defined before use, except in #ifdef and 
#ifndef preprocessor directives and the defined() operator 

Required Yes 

Misra2004:19.12 
There shall be at most one occurrence of the # or ## preprocessor operators in a single macro 
definition 

Required No 

Misra2004:19.13 The # and ## preprocessor operators should not be used Advisory Yes 

Misra2004:19.14 The defined preprocessor operator shall only be used in one of the two standard forms Required No 

Misra2004:19.15 Precautions shall be taken in order to prevent the contents of a header file being included twice Required No 

Misra2004:19.16 Preprocessing directives shall be syntactically meaningful even when excluded by the preprocessor Required No 

Misra2004:19.17 
All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if or #ifdef 
directive to which they are related 

Required Yes 

Misra2004:20.1 
Reserved identifiers, macros and functions in the standard library, shall not be defined, redefined or 
undefined 

Required Yes 

Misra2004:20.2 The names of standard library macros, objects and functions shall not be reused Required Yes 

Misra2004:20.3 The validity of values passed to library functions shall be checked Required Yes 

Misra2004:20.4 Dynamic heap memory allocation shall not be used Required Yes 

Misra2004:20.5 The error indicator errno shall not be used Required No 

Misra2004:20.6 The macro offsetof, in library , shall not be used Required Yes 

Misra2004:20.7 The setjmp macro and the longjmp function shall not be used Required Yes 

Misra2004:20.8 The signal handling facilities of shall not be used Required Yes 

Misra2004:20.9 The input/output library shall not be used in production code Required Yes 

Misra2004:20.10 The library functions atof, atoi and atol from library shall not be used Required Yes 

Misra2004:20.11 The library functions abort, exit, getenv and system from library shall not be used Required Yes 

Misra2004:20.12 The time handling functions of library shall not be used Required Yes 

Misra2004:21.1 
Minimisation of run-time failures shall be ensured by the use of at least one of (a) static analysis 
tools/techniques; (b) dynamic analysis tools/techniques; (c) explicit coding of checks to handle run-
time faults 

Required No 
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MISRA C:2004 BROAD MAPPING (CODESONAR V8.0) 

 
The following table contains CodeSonar warning classes that are broadly mapped to MISRA 

C:2004 categories. 

 

Rule Rule Name Category Supported 

Misra2004:1.1 
All code shall conform to ISO/IEC 9899:1990 "Programming languages C", amended and corrected 
by ISO/IEC 9899/COR1:1995, ISO/IEC 9899/AMD1:1995, and ISO/IEC 9899/COR2:1996 

Required Yes 

Misra2004:1.2 No reliance shall be placed on undefined or unspecified behaviour Required No 

Misra2004:1.3 
Multiple compilers and/or languages shall only be used if there is a common defined interface 

standard for object code to which the languages/compilers/assemblers conform 
Required No 

Misra2004:1.4 
The compiler/linker shall be checked to ensure that 31 character significance and case sensitivity are 
supported for external identifiers 

Required No 

Misra2004:1.5 Floating-point implementations should comply with a defined floating-point standard Advisory No 

Misra2004:2.1 Assembly language shall be encapsulated and isolated Required Yes 

Misra2004:2.2 Source code shall only use /* ... */ style comments Required Yes 

Misra2004:2.3 The character sequence /* shall not be used within a comment Required Yes 

Misra2004:2.4 Sections of code should not be "commented out" Advisory Yes 

Misra2004:3.1 All usage of implementation-defined behaviour shall be documented Required No 

Misra2004:3.2 The character set and the corresponding encoding shall be documented Required No 

Misra2004:3.3 
The implementation of integer division in the chosen compiler should be determined, documented 
and taken into account 

Advisory No 

Misra2004:3.4 All uses of the #pragma directive shall be documented and explained Required No 

Misra2004:3.5 
The implementation defined behaviour and packing of bitfields shall be documented if being relied 

upon 
Required Yes 

Misra2004:3.6 
All libraries used in production code shall be written to comply with the provisions of this document, 
and shall have been subject to appropriate validation 

Required No 

Misra2004:4.1 Only those escape sequences that are defined in the ISO C standard shall be used Required No 

Misra2004:4.2 Trigraphs shall not be used Required Yes 

Misra2004:5.1 Identifiers (internal and external) shall not rely on the significance of more than 31 characters Required Yes 

Misra2004:5.2 
Identifiers in an inner scope shall not use the same name as an identifier in an outer scope, and 
therefore hide that identifier 

Required Yes 

Misra2004:5.3 A typedef name shall be a unique identifier Required Yes 

Misra2004:5.4 A tag name shall be a unique identifier Required Yes 

Misra2004:5.5 No object or function identifier with static storage duration should be reused Advisory Yes 

Misra2004:5.6 
No identifier in one name space should have the same spelling as an identifier in another name space, 
with the exception of structure member and union member names 

Advisory No 

Misra2004:5.7 No identifier name should be reused Advisory Yes 

Misra2004:6.1 The plain char type shall be used only for storage and use of character values Required Yes 

Misra2004:6.2 signed and unsigned char type shall be used only for the storage and use of numeric values Required Yes 

Misra2004:6.3 typedefs that indicate size and signedness should be used in place of the basic numerical types Advisory Yes 

Misra2004:6.4 Bit fields shall only be defined to be of type unsigned int or signed int Required Yes 

Misra2004:6.5 Bit fields of signed type shall be at least 2 bits long Required Yes 

Misra2004:7.1 Octal constants (other than zero) and octal escape sequences shall not be used Required Yes 

Misra2004:8.1 
Functions shall have prototype declarations and the prototype shall be visible at both the function 
definition and call 

Required Yes 

Misra2004:8.2 Whenever an object or function is declared or defined, its type shall be explicitly stated Required Yes 

Misra2004:8.3 
For each function parameter the type given in the declaration and definition shall be identical, and the 
return types shall also be identical 

Required Yes 

Misra2004:8.4 If objects or functions are declared more than once their types shall be compatible Required Yes 
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Misra2004:8.5 There shall be no definitions of objects or functions in a header file Required Yes 

Misra2004:8.6 Functions shall be declared at file scope Required Yes 

Misra2004:8.7 Objects shall be defined at block scope if they are only accessed from within a single function Required Yes 

Misra2004:8.8 An external object or function shall be declared in one and only one file Required Yes 

Misra2004:8.9 An identifier with external linkage shall have exactly one external definition Required Yes 

Misra2004:8.10 
All declarations and definitions of objects or functions at file scope shall have internal linkage unless 
external linkage is required 

Required Yes 

Misra2004:8.11 
The static storage class specifier shall be used in definitions and declarations of objects and functions 
that have internal linkage 

Required Yes 

Misra2004:8.12 
When an array is declared with external linkage, its size shall be stated explicitly or defined implicitly 
by initialisation 

Required Yes 

Misra2004:9.1 All automatic variables shall have been assigned a value before being used Required Yes 

Misra2004:9.2 
Braces shall be used to indicate and match the structure in the non-zero initialisation of arrays and 
structures 

Required Yes 

Misra2004:9.3 
In an enumerator list, the "=" construct shall not be used to explicitly initialise members other than 

the first, unless all items are explicitly initialised 
Required Yes 

Misra2004:10.1 

The value of an expression of integer type shall not be implicitly converted to a different underlying 
type if: (a) it is not a conversion to a wider integer type of the same signedness, or (b) the expression 

is complex, or (c) the expression is not constant and is a function argument, or (d) the expression is 
not constant and is a return expression 

Required Yes 

Misra2004:10.2 
The value of an expression of floating type shall not be implicitly converted to a different type if: (a) 
it is not a conversion to a wider floating type, or (b) the expression is complex, or (c) the expression 
is a function argument, or (d) the expression is a return expression 

Required Yes 

Misra2004:10.3 
The value of a complex expression of integer type shall only be cast to a type of the same signedness 
that is no wider than the underlying type of the expression 

Required Yes 

Misra2004:10.4 
The value of a complex expression of floating type shall only be cast to a floating type that is 

narrower or of the same size 
Required Yes 

Misra2004:10.5 
If the bitwise operators ~ and << are applied to an operand of underlying type unsigned char or 
unsigned short, the result shall be immediately cast to the underlying type of the operand 

Required Yes 

Misra2004:10.6 A "U" suffix shall be applied to all constants of unsigned type Required Yes 

Misra2004:11.1 
Conversions shall not be performed between a pointer to a function and any type other than an 
integral type 

Required Yes 

Misra2004:11.2 
Conversions shall not be performed between a pointer to object and any type other than an integral 
type, another pointer to object type or a pointer to void 

Required Yes 

Misra2004:11.3 A cast should not be performed between a pointer type and an integral type Advisory Yes 

Misra2004:11.4 A cast should not be performed between a pointer to object type and a different pointer to object type Advisory Yes 

Misra2004:11.5 
A cast shall not be performed that removes any const or volatile qualification from the type addressed 

by a pointer 
Required Yes 

Misra2004:12.1 Limited dependence should be placed on C's operator precedence rules in expressions Advisory Yes 

Misra2004:12.2 The value of an expression shall be the same under any order of evaluation that the standard permits Required No 

Misra2004:12.3 The sizeof operator shall not be used on expressions that contain side effects Required Yes 

Misra2004:12.4 The right-hand operand of a logical && or || operator shall not contain side effects Required No 

Misra2004:12.5 The operands of a logical && or || shall be primary-expressions Required No 

Misra2004:12.6 
The operands of logical operators (&&, || and !) should be effectively Boolean. Expressions that are 
effectively Boolean should not be used as operands to operators other than (&&, || , !, =, ==, != and 

?:) 

Advisory Yes 

Misra2004:12.7 Bitwise operators shall not be applied to operands whose underlying type is signed Required Yes 

Misra2004:12.8 
The right-hand operand of a shift operator shall lie between zero and one less than the width in bits of 
the underlying type of the left-hand operand 

Required Yes 

Misra2004:12.9 The unary minus operator shall not be applied to an expression whose underlying type is unsigned Required Yes 

Misra2004:12.10 The comma operator shall not be used Required Yes 

Misra2004:12.11 Evaluation of constant unsigned integer expressions should not lead to wraparound Advisory Yes 
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Misra2004:12.12 The underlying bit representations of floating-point values shall not be used Required No 

Misra2004:12.13 
The increment (++) and decrement (--) operators should not be mixed with other operators in an 
expression 

Advisory Yes 

Misra2004:13.1 Assignment operators shall not be used in expressions that yield a Boolean value Required No 

Misra2004:13.2 Tests of a value against zero should be made explicit, unless the operand is effectively Boolean Advisory Yes 

Misra2004:13.3 Floating-point expressions shall not be tested for equality or inequality Required Yes 

Misra2004:13.4 The controlling expression of a for statement shall not contain any objects of floating type Required Yes 

Misra2004:13.5 The three expressions of a for statement shall be concerned only with loop control Required Yes 

Misra2004:13.6 
Numeric variables being used within a for loop for iteration counting shall not be modified in the 
body of the loop 

Required Yes 

Misra2004:13.7 Boolean operations whose results are invariant shall not be permitted Required Yes 

Misra2004:14.1 There shall be no unreachable code Required Yes 

Misra2004:14.2 
All non-null statements shall either (a) have at least one side-effect however executed, or (b) cause 
control flow to change 

Required Yes 

Misra2004:14.3 
Before preprocessing, a null statement shall only occur on a line by itself; it may be followed by a 
comment provided that the first character following the null statement is a white-space character 

Required Yes 

Misra2004:14.4 The goto statement shall not be used Required Yes 

Misra2004:14.5 The continue statement shall not be used Required Yes 

Misra2004:14.6 For any iteration statement there shall be at most one break statement used for loop termination Required Yes 

Misra2004:14.7 A function shall have a single point of exit at the end of the function Required Yes 

Misra2004:14.8 
The statement forming the body of a switch, while, do ... while or for statement shall be a compound 
statement 

Required Yes 

Misra2004:14.9 
An if (expression) construct shall be followed by a compound statement. The else keyword shall be 
followed by either a compound statement, or another if statement 

Required Yes 

Misra2004:14.10 All if . else if constructs shall be terminated with an else clause Required Yes 

Misra2004:15.0 The MISRA C switch syntax shall be used Required Yes 

Misra2004:15.1 
A switch label shall only be used when the most closely-enclosing compound statement is the body of 
a switch statement 

Required Yes 

Misra2004:15.2 An unconditional break statement shall terminate every non-empty switch clause Required Yes 

Misra2004:15.3 The final clause of a switch statement shall be the default clause Required Yes 

Misra2004:15.4 A switch expression shall not represent a value that is effectively Boolean Required Yes 

Misra2004:15.5 Every switch statement shall have at least one case clause Required Yes 

Misra2004:16.1 Functions shall not be defined with variable numbers of arguments Required No 

Misra2004:16.2 Functions shall not call themselves, either directly or indirectly Required Yes 

Misra2004:16.3 Identifiers shall be given for all of the parameters in a function prototype declaration Required Yes 

Misra2004:16.4 The identifiers used in the declaration and definition of a function shall be identical Required Yes 

Misra2004:16.5 Functions with no parameters shall be declared and defined with the parameter list void Required Yes 

Misra2004:16.6 The number of arguments passed to a function shall match the number of parameters Required Yes 

Misra2004:16.7 
A pointer parameter in a function prototype should be declared as pointer to const if the pointer is not 
used to modify the addressed object 

Advisory Yes 

Misra2004:16.8 
All exit paths from a function with non-void return type shall have an explicit return statement with 
an expression 

Required Yes 

Misra2004:16.9 
A function identifier shall only be used with either a preceding &, or with a parenthesised parameter 
list, which may be empty 

Required Yes 

Misra2004:16.10 If a function returns error information, then that error information shall be tested Required Yes 

Misra2004:17.1 Pointer arithmetic shall only be applied to pointers that address an array or array element Required Yes 

Misra2004:17.2 Pointer subtraction shall only be applied to pointers that address elements of the same array Required Yes 

Misra2004:17.3 >, >=, <, <= shall not be applied to pointer types except where they point to the same array Required Yes 

Misra2004:17.4 Array indexing shall be the only allowed form of pointer arithmetic Required Yes 

Misra2004:17.5 The declaration of objects should contain no more than 2 levels of pointer indirection Advisory No 
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Misra2004:17.6 
The address of an object with automatic storage shall not be assigned to another object that may 
persist after the first object has ceased to exist 

Required Yes 

Misra2004:18.1 All structure or union types shall be complete at the end of a translation unit Required No 

Misra2004:18.2 An object shall not be assigned to an overlapping object Required Yes 

Misra2004:18.3 An area of memory shall not be reused for unrelated purposes Required No 

Misra2004:18.4 Unions shall not be used Required Yes 

Misra2004:19.1 #include statements in a file should only be preceded by other preprocessor directives or comments Advisory Yes 

Misra2004:19.2 Non-standard characters should not occur in header file names in #include directives Advisory Yes 

Misra2004:19.3 The #include directive shall be followed by either a or "filename" sequence Required Yes 

Misra2004:19.4 
C macros shall only expand to a braced initialiser, a constant, a string literal, a parenthesised 
expression, a type qualifier, a storage class specifier, or a do-whilezero construct 

Required Yes 

Misra2004:19.5 Macros shall not be #define'd or #undef'd within a block Required Yes 

Misra2004:19.6 #undef shall not be used Required Yes 

Misra2004:19.7 A function should be used in preference to a function-like macro Advisory Yes 

Misra2004:19.8 A function-like macro shall not be invoked without all of its arguments Required No 

Misra2004:19.9 Arguments to a function-like macro shall not contain tokens that look like preprocessing directives Required Yes 

Misra2004:19.10 
In the definition of a function-like macro each instance of a parameter shall be enclosed in 
parentheses unless it is used as the operand of # or ## 

Required No 

Misra2004:19.11 
All macro identifiers in preprocessor directives shall be defined before use, except in #ifdef and 
#ifndef preprocessor directives and the defined() operator 

Required Yes 

Misra2004:19.12 
There shall be at most one occurrence of the # or ## preprocessor operators in a single macro 
definition 

Required No 

Misra2004:19.13 The # and ## preprocessor operators should not be used Advisory Yes 

Misra2004:19.14 The defined preprocessor operator shall only be used in one of the two standard forms Required No 

Misra2004:19.15 Precautions shall be taken in order to prevent the contents of a header file being included twice Required No 

Misra2004:19.16 Preprocessing directives shall be syntactically meaningful even when excluded by the preprocessor Required No 

Misra2004:19.17 
All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if or #ifdef 
directive to which they are related 

Required Yes 

Misra2004:20.1 
Reserved identifiers, macros and functions in the standard library, shall not be defined, redefined or 
undefined 

Required Yes 

Misra2004:20.2 The names of standard library macros, objects and functions shall not be reused Required Yes 

Misra2004:20.3 The validity of values passed to library functions shall be checked Required Yes 

Misra2004:20.4 Dynamic heap memory allocation shall not be used Required Yes 

Misra2004:20.5 The error indicator errno shall not be used Required No 

Misra2004:20.6 The macro offsetof, in library , shall not be used Required Yes 

Misra2004:20.7 The setjmp macro and the longjmp function shall not be used Required Yes 

Misra2004:20.8 The signal handling facilities of shall not be used Required Yes 

Misra2004:20.9 The input/output library shall not be used in production code Required Yes 

Misra2004:20.10 The library functions atof, atoi and atol from library shall not be used Required Yes 

Misra2004:20.11 The library functions abort, exit, getenv and system from library shall not be used Required Yes 

Misra2004:20.12 The time handling functions of library shall not be used Required Yes 

Misra2004:21.1 
Minimisation of run-time failures shall be ensured by the use of at least one of (a) static analysis 
tools/techniques; (b) dynamic analysis tools/techniques; (c) explicit coding of checks to handle run-
time faults 

Required No 
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